{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "execution": { "iopub.execute_input": "2025-04-03T12:16:07.011990Z", "iopub.status.busy": "2025-04-03T12:16:07.011808Z", "iopub.status.idle": "2025-04-03T12:16:09.006578Z", "shell.execute_reply": "2025-04-03T12:16:09.005855Z" } }, "outputs": [], "source": [ "import pathlib\n", "from IPython.display import Code\n", "\n", "import RATapi as RAT\n", "from RATapi.models import Parameter" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Simple example of a layer containing domains using a custom XY model\n", "\n", "Domains custom XY models operate in the same way as domains custom layer models, in that there is an additional input to the custom model specifying the domain to be calculated:\n", "\n", "This is then used within the function to calculate the correct SLD profile for each contrast and domain. In this example, we simulate a hydrogenated layer on a silicon substrate, containing domains of a larger SLD, against D2O, SMW and water.\n", "\n", "Start by making the project and adding the parameters:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2025-04-03T12:16:09.010565Z", "iopub.status.busy": "2025-04-03T12:16:09.010228Z", "iopub.status.idle": "2025-04-03T12:16:09.018629Z", "shell.execute_reply": "2025-04-03T12:16:09.017968Z" } }, "outputs": [], "source": [ "problem = RAT.Project(calculation=\"domains\", model=\"custom xy\", geometry=\"substrate/liquid\")\n", "\n", "parameter_list = [\n", " Parameter(name=\"Oxide Thickness\", min=10.0, value=20.0, max=50.0, fit=True),\n", " Parameter(name=\"Layer Thickness\", min=1.0, value=30.0, max=500.0, fit=True),\n", " Parameter(name=\"Layer SLD\", min=-0.5e-6, value=-0.5e-6, max=0.0, fit=True),\n", " Parameter(name=\"Layer Roughness\", min=2.0, value=5.0, max=7.0, fit=True),\n", " Parameter(name=\"Domain SLD\", min=1.0e-6, value=1.0e-6, max=5.0e-6, fit=True)\n", "]\n", "\n", "problem.parameters.extend(parameter_list)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now set the SLDs of the bulk phases for our samples." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2025-04-03T12:16:09.020843Z", "iopub.status.busy": "2025-04-03T12:16:09.020644Z", "iopub.status.idle": "2025-04-03T12:16:09.026941Z", "shell.execute_reply": "2025-04-03T12:16:09.026314Z" } }, "outputs": [], "source": [ "problem.bulk_in.set_fields(0, name=\"Silicon\", value=2.073e-6, max=1.0, fit=False)\n", "\n", "problem.bulk_out.append(name=\"SLD SMW\", min=2.0e-6, value=2.073e-6, max=2.1e-6)\n", "problem.bulk_out.append(name=\"SLD H2O\", min=-0.6e-6, value=-0.56e-6, max=-0.5e-6)\n", "\n", "problem.scalefactors.set_fields(0, min=0.8, value=1.0, max=1.1, fit=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The custom file takes the parameters and build the model as usual, changing the SLD of the layer depending on whether we are calculating the layer (domain = 0), or the domain (domain = 1)." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2025-04-03T12:16:09.029109Z", "iopub.status.busy": "2025-04-03T12:16:09.028902Z", "iopub.status.idle": "2025-04-03T12:16:09.220946Z", "shell.execute_reply": "2025-04-03T12:16:09.220221Z" } }, "outputs": [ { "data": { "text/html": [ "
import math\n",
       "\n",
       "import numpy as np\n",
       "\n",
       "\n",
       "def domains_XY_model(params, bulk_in, bulk_out, contrast, domain):\n",
       "    # Split up the parameters for convenience\n",
       "    subRough = params[0]\n",
       "    oxideThick = params[1]\n",
       "    layerThick = params[2]\n",
       "    layerSLD = params[3]\n",
       "    layerRough = params[4]\n",
       "    domainSLD = params[5]\n",
       "\n",
       "    # Make an array of z values for our model\n",
       "    z = np.arange(0, 141)\n",
       "\n",
       "    # Make the volume fraction distribution for our Silicon substrate\n",
       "    [vfSilicon, siSurf] = makeLayer(z, -25, 50, 1, subRough, subRough)\n",
       "\n",
       "    # ... and the Oxide ...\n",
       "    [vfOxide, oxSurface] = makeLayer(z, siSurf, oxideThick, 1, subRough, subRough)\n",
       "\n",
       "    # ... and also our layer.\n",
       "    [vfLayer, laySurface] = makeLayer(z, oxSurface, layerThick, 1, subRough, layerRough)\n",
       "\n",
       "    # Everything that is not already occupied will be filled will water\n",
       "    totalVF = vfSilicon + vfOxide + vfLayer\n",
       "    vfWater = 1 - totalVF\n",
       "\n",
       "    # Now convert the Volume Fractions to SLDs\n",
       "    siSLD = vfSilicon * bulk_in\n",
       "    oxSLD = vfOxide * 3.41e-6\n",
       "\n",
       "    # Layer SLD depends on whether we are calculating the domain or not\n",
       "    if domain == 0:\n",
       "        laySLD = vfLayer * layerSLD\n",
       "    else:\n",
       "        laySLD = vfLayer * domainSLD\n",
       "\n",
       "    # ... and finally the water SLD.\n",
       "    waterSLD = vfWater * bulk_out[contrast]\n",
       "\n",
       "    # Make the total SLD by just adding them all up\n",
       "    totalSLD = siSLD + oxSLD + laySLD + waterSLD\n",
       "\n",
       "    # The output is just a [n x 2] array of z against SLD\n",
       "    SLD = np.column_stack([z, totalSLD])\n",
       "\n",
       "    return SLD, subRough\n",
       "\n",
       "\n",
       "def makeLayer(z, prevLaySurf, thickness, height, Sigma_L, Sigma_R):\n",
       "    """This produces a layer, with a defined thickness, height and roughness.\n",
       "    Each side of the layer has its own roughness value.\n",
       "    """\n",
       "    # Find the edges\n",
       "    left = prevLaySurf\n",
       "    right = prevLaySurf + thickness\n",
       "\n",
       "    # Make our heaviside\n",
       "    a = (z - left) / ((2**0.5) * Sigma_L)\n",
       "    b = (z - right) / ((2**0.5) * Sigma_R)\n",
       "\n",
       "    erf_a = np.array([math.erf(value) for value in a])\n",
       "    erf_b = np.array([math.erf(value) for value in b])\n",
       "\n",
       "    VF = np.array((height / 2) * (erf_a - erf_b))\n",
       "\n",
       "    return VF, right\n",
       "
\n" ], "text/latex": [ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n", "\\PY{k+kn}{import}\\PY{+w}{ }\\PY{n+nn}{math}\n", "\n", "\\PY{k+kn}{import}\\PY{+w}{ }\\PY{n+nn}{numpy}\\PY{+w}{ }\\PY{k}{as}\\PY{+w}{ }\\PY{n+nn}{np}\n", "\n", "\n", "\\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{domains\\PYZus{}XY\\PYZus{}model}\\PY{p}{(}\\PY{n}{params}\\PY{p}{,} \\PY{n}{bulk\\PYZus{}in}\\PY{p}{,} \\PY{n}{bulk\\PYZus{}out}\\PY{p}{,} \\PY{n}{contrast}\\PY{p}{,} \\PY{n}{domain}\\PY{p}{)}\\PY{p}{:}\n", " \\PY{c+c1}{\\PYZsh{} Split up the parameters for convenience}\n", " \\PY{n}{subRough} \\PY{o}{=} \\PY{n}{params}\\PY{p}{[}\\PY{l+m+mi}{0}\\PY{p}{]}\n", " \\PY{n}{oxideThick} \\PY{o}{=} \\PY{n}{params}\\PY{p}{[}\\PY{l+m+mi}{1}\\PY{p}{]}\n", " \\PY{n}{layerThick} \\PY{o}{=} \\PY{n}{params}\\PY{p}{[}\\PY{l+m+mi}{2}\\PY{p}{]}\n", " \\PY{n}{layerSLD} \\PY{o}{=} \\PY{n}{params}\\PY{p}{[}\\PY{l+m+mi}{3}\\PY{p}{]}\n", " \\PY{n}{layerRough} \\PY{o}{=} \\PY{n}{params}\\PY{p}{[}\\PY{l+m+mi}{4}\\PY{p}{]}\n", " \\PY{n}{domainSLD} \\PY{o}{=} \\PY{n}{params}\\PY{p}{[}\\PY{l+m+mi}{5}\\PY{p}{]}\n", "\n", " \\PY{c+c1}{\\PYZsh{} Make an array of z values for our model}\n", " \\PY{n}{z} \\PY{o}{=} \\PY{n}{np}\\PY{o}{.}\\PY{n}{arange}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{,} \\PY{l+m+mi}{141}\\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} Make the volume fraction distribution for our Silicon substrate}\n", " \\PY{p}{[}\\PY{n}{vfSilicon}\\PY{p}{,} \\PY{n}{siSurf}\\PY{p}{]} \\PY{o}{=} \\PY{n}{makeLayer}\\PY{p}{(}\\PY{n}{z}\\PY{p}{,} \\PY{o}{\\PYZhy{}}\\PY{l+m+mi}{25}\\PY{p}{,} \\PY{l+m+mi}{50}\\PY{p}{,} \\PY{l+m+mi}{1}\\PY{p}{,} \\PY{n}{subRough}\\PY{p}{,} \\PY{n}{subRough}\\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} ... and the Oxide ...}\n", " \\PY{p}{[}\\PY{n}{vfOxide}\\PY{p}{,} \\PY{n}{oxSurface}\\PY{p}{]} \\PY{o}{=} \\PY{n}{makeLayer}\\PY{p}{(}\\PY{n}{z}\\PY{p}{,} \\PY{n}{siSurf}\\PY{p}{,} \\PY{n}{oxideThick}\\PY{p}{,} \\PY{l+m+mi}{1}\\PY{p}{,} \\PY{n}{subRough}\\PY{p}{,} \\PY{n}{subRough}\\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} ... and also our layer.}\n", " \\PY{p}{[}\\PY{n}{vfLayer}\\PY{p}{,} \\PY{n}{laySurface}\\PY{p}{]} \\PY{o}{=} \\PY{n}{makeLayer}\\PY{p}{(}\\PY{n}{z}\\PY{p}{,} \\PY{n}{oxSurface}\\PY{p}{,} \\PY{n}{layerThick}\\PY{p}{,} \\PY{l+m+mi}{1}\\PY{p}{,} \\PY{n}{subRough}\\PY{p}{,} \\PY{n}{layerRough}\\PY{p}{)}\n", "\n", " \\PY{c+c1}{\\PYZsh{} Everything that is not already occupied will be filled will water}\n", " \\PY{n}{totalVF} \\PY{o}{=} \\PY{n}{vfSilicon} \\PY{o}{+} \\PY{n}{vfOxide} \\PY{o}{+} \\PY{n}{vfLayer}\n", " \\PY{n}{vfWater} \\PY{o}{=} \\PY{l+m+mi}{1} \\PY{o}{\\PYZhy{}} \\PY{n}{totalVF}\n", "\n", " \\PY{c+c1}{\\PYZsh{} Now convert the Volume Fractions to SLDs}\n", " \\PY{n}{siSLD} \\PY{o}{=} \\PY{n}{vfSilicon} \\PY{o}{*} \\PY{n}{bulk\\PYZus{}in}\n", " \\PY{n}{oxSLD} \\PY{o}{=} \\PY{n}{vfOxide} \\PY{o}{*} \\PY{l+m+mf}{3.41e\\PYZhy{}6}\n", "\n", " \\PY{c+c1}{\\PYZsh{} Layer SLD depends on whether we are calculating the domain or not}\n", " \\PY{k}{if} \\PY{n}{domain} \\PY{o}{==} \\PY{l+m+mi}{0}\\PY{p}{:}\n", " \\PY{n}{laySLD} \\PY{o}{=} \\PY{n}{vfLayer} \\PY{o}{*} \\PY{n}{layerSLD}\n", " \\PY{k}{else}\\PY{p}{:}\n", " \\PY{n}{laySLD} \\PY{o}{=} \\PY{n}{vfLayer} \\PY{o}{*} \\PY{n}{domainSLD}\n", "\n", " \\PY{c+c1}{\\PYZsh{} ... and finally the water SLD.}\n", " \\PY{n}{waterSLD} \\PY{o}{=} \\PY{n}{vfWater} \\PY{o}{*} \\PY{n}{bulk\\PYZus{}out}\\PY{p}{[}\\PY{n}{contrast}\\PY{p}{]}\n", "\n", " \\PY{c+c1}{\\PYZsh{} Make the total SLD by just adding them all up}\n", " \\PY{n}{totalSLD} \\PY{o}{=} \\PY{n}{siSLD} \\PY{o}{+} \\PY{n}{oxSLD} \\PY{o}{+} \\PY{n}{laySLD} \\PY{o}{+} \\PY{n}{waterSLD}\n", "\n", " \\PY{c+c1}{\\PYZsh{} The output is just a [n x 2] array of z against SLD}\n", " \\PY{n}{SLD} \\PY{o}{=} \\PY{n}{np}\\PY{o}{.}\\PY{n}{column\\PYZus{}stack}\\PY{p}{(}\\PY{p}{[}\\PY{n}{z}\\PY{p}{,} \\PY{n}{totalSLD}\\PY{p}{]}\\PY{p}{)}\n", "\n", " \\PY{k}{return} \\PY{n}{SLD}\\PY{p}{,} \\PY{n}{subRough}\n", "\n", "\n", "\\PY{k}{def}\\PY{+w}{ }\\PY{n+nf}{makeLayer}\\PY{p}{(}\\PY{n}{z}\\PY{p}{,} \\PY{n}{prevLaySurf}\\PY{p}{,} \\PY{n}{thickness}\\PY{p}{,} \\PY{n}{height}\\PY{p}{,} \\PY{n}{Sigma\\PYZus{}L}\\PY{p}{,} \\PY{n}{Sigma\\PYZus{}R}\\PY{p}{)}\\PY{p}{:}\n", "\\PY{+w}{ }\\PY{l+s+sd}{\\PYZdq{}\\PYZdq{}\\PYZdq{}This produces a layer, with a defined thickness, height and roughness.}\n", "\\PY{l+s+sd}{ Each side of the layer has its own roughness value.}\n", "\\PY{l+s+sd}{ \\PYZdq{}\\PYZdq{}\\PYZdq{}}\n", " \\PY{c+c1}{\\PYZsh{} Find the edges}\n", " \\PY{n}{left} \\PY{o}{=} \\PY{n}{prevLaySurf}\n", " \\PY{n}{right} \\PY{o}{=} \\PY{n}{prevLaySurf} \\PY{o}{+} \\PY{n}{thickness}\n", "\n", " \\PY{c+c1}{\\PYZsh{} Make our heaviside}\n", " \\PY{n}{a} \\PY{o}{=} \\PY{p}{(}\\PY{n}{z} \\PY{o}{\\PYZhy{}} \\PY{n}{left}\\PY{p}{)} \\PY{o}{/} \\PY{p}{(}\\PY{p}{(}\\PY{l+m+mi}{2}\\PY{o}{*}\\PY{o}{*}\\PY{l+m+mf}{0.5}\\PY{p}{)} \\PY{o}{*} \\PY{n}{Sigma\\PYZus{}L}\\PY{p}{)}\n", " \\PY{n}{b} \\PY{o}{=} \\PY{p}{(}\\PY{n}{z} \\PY{o}{\\PYZhy{}} \\PY{n}{right}\\PY{p}{)} \\PY{o}{/} \\PY{p}{(}\\PY{p}{(}\\PY{l+m+mi}{2}\\PY{o}{*}\\PY{o}{*}\\PY{l+m+mf}{0.5}\\PY{p}{)} \\PY{o}{*} \\PY{n}{Sigma\\PYZus{}R}\\PY{p}{)}\n", "\n", " \\PY{n}{erf\\PYZus{}a} \\PY{o}{=} \\PY{n}{np}\\PY{o}{.}\\PY{n}{array}\\PY{p}{(}\\PY{p}{[}\\PY{n}{math}\\PY{o}{.}\\PY{n}{erf}\\PY{p}{(}\\PY{n}{value}\\PY{p}{)} \\PY{k}{for} \\PY{n}{value} \\PY{o+ow}{in} \\PY{n}{a}\\PY{p}{]}\\PY{p}{)}\n", " \\PY{n}{erf\\PYZus{}b} \\PY{o}{=} \\PY{n}{np}\\PY{o}{.}\\PY{n}{array}\\PY{p}{(}\\PY{p}{[}\\PY{n}{math}\\PY{o}{.}\\PY{n}{erf}\\PY{p}{(}\\PY{n}{value}\\PY{p}{)} \\PY{k}{for} \\PY{n}{value} \\PY{o+ow}{in} \\PY{n}{b}\\PY{p}{]}\\PY{p}{)}\n", "\n", " \\PY{n}{VF} \\PY{o}{=} \\PY{n}{np}\\PY{o}{.}\\PY{n}{array}\\PY{p}{(}\\PY{p}{(}\\PY{n}{height} \\PY{o}{/} \\PY{l+m+mi}{2}\\PY{p}{)} \\PY{o}{*} \\PY{p}{(}\\PY{n}{erf\\PYZus{}a} \\PY{o}{\\PYZhy{}} \\PY{n}{erf\\PYZus{}b}\\PY{p}{)}\\PY{p}{)}\n", "\n", " \\PY{k}{return} \\PY{n}{VF}\\PY{p}{,} \\PY{n}{right}\n", "\\end{Verbatim}\n" ], "text/plain": [ "import math\n", "\n", "import numpy as np\n", "\n", "\n", "def domains_XY_model(params, bulk_in, bulk_out, contrast, domain):\n", " # Split up the parameters for convenience\n", " subRough = params[0]\n", " oxideThick = params[1]\n", " layerThick = params[2]\n", " layerSLD = params[3]\n", " layerRough = params[4]\n", " domainSLD = params[5]\n", "\n", " # Make an array of z values for our model\n", " z = np.arange(0, 141)\n", "\n", " # Make the volume fraction distribution for our Silicon substrate\n", " [vfSilicon, siSurf] = makeLayer(z, -25, 50, 1, subRough, subRough)\n", "\n", " # ... and the Oxide ...\n", " [vfOxide, oxSurface] = makeLayer(z, siSurf, oxideThick, 1, subRough, subRough)\n", "\n", " # ... and also our layer.\n", " [vfLayer, laySurface] = makeLayer(z, oxSurface, layerThick, 1, subRough, layerRough)\n", "\n", " # Everything that is not already occupied will be filled will water\n", " totalVF = vfSilicon + vfOxide + vfLayer\n", " vfWater = 1 - totalVF\n", "\n", " # Now convert the Volume Fractions to SLDs\n", " siSLD = vfSilicon * bulk_in\n", " oxSLD = vfOxide * 3.41e-6\n", "\n", " # Layer SLD depends on whether we are calculating the domain or not\n", " if domain == 0:\n", " laySLD = vfLayer * layerSLD\n", " else:\n", " laySLD = vfLayer * domainSLD\n", "\n", " # ... and finally the water SLD.\n", " waterSLD = vfWater * bulk_out[contrast]\n", "\n", " # Make the total SLD by just adding them all up\n", " totalSLD = siSLD + oxSLD + laySLD + waterSLD\n", "\n", " # The output is just a [n x 2] array of z against SLD\n", " SLD = np.column_stack([z, totalSLD])\n", "\n", " return SLD, subRough\n", "\n", "\n", "def makeLayer(z, prevLaySurf, thickness, height, Sigma_L, Sigma_R):\n", " \"\"\"This produces a layer, with a defined thickness, height and roughness.\n", " Each side of the layer has its own roughness value.\n", " \"\"\"\n", " # Find the edges\n", " left = prevLaySurf\n", " right = prevLaySurf + thickness\n", "\n", " # Make our heaviside\n", " a = (z - left) / ((2**0.5) * Sigma_L)\n", " b = (z - right) / ((2**0.5) * Sigma_R)\n", "\n", " erf_a = np.array([math.erf(value) for value in a])\n", " erf_b = np.array([math.erf(value) for value in b])\n", "\n", " VF = np.array((height / 2) * (erf_a - erf_b))\n", "\n", " return VF, right" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Code(\"domains_XY_model.py\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, add the custom file to the project, and make our three contrasts." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2025-04-03T12:16:09.223824Z", "iopub.status.busy": "2025-04-03T12:16:09.223598Z", "iopub.status.idle": "2025-04-03T12:16:09.231876Z", "shell.execute_reply": "2025-04-03T12:16:09.231239Z" } }, "outputs": [], "source": [ "problem.custom_files.append(name=\"Domain Layer\", filename=\"domains_XY_model.py\", language=\"python\", path=pathlib.Path.cwd().resolve())\n", "\n", "# Make contrasts\n", "problem.contrasts.append(\n", " name=\"D2O\",\n", " background=\"Background 1\",\n", " resolution=\"Resolution 1\",\n", " scalefactor=\"Scalefactor 1\",\n", " bulk_in=\"Silicon\",\n", " bulk_out=\"SLD D2O\",\n", " domain_ratio=\"Domain Ratio 1\",\n", " data=\"Simulation\",\n", " model=[\"Domain Layer\"],\n", ")\n", "\n", "problem.contrasts.append(\n", " name=\"SMW\",\n", " background=\"Background 1\",\n", " resolution=\"Resolution 1\",\n", " scalefactor=\"Scalefactor 1\",\n", " bulk_in=\"Silicon\",\n", " bulk_out=\"SLD SMW\",\n", " domain_ratio=\"Domain Ratio 1\",\n", " data=\"Simulation\",\n", " model=[\"Domain Layer\"],\n", ")\n", "\n", "problem.contrasts.append(\n", " name=\"H2O\",\n", " background=\"Background 1\",\n", " resolution=\"Resolution 1\",\n", " scalefactor=\"Scalefactor 1\",\n", " bulk_in=\"Silicon\",\n", " bulk_out=\"SLD H2O\",\n", " domain_ratio=\"Domain Ratio 1\",\n", " data=\"Simulation\",\n", " model=[\"Domain Layer\"],\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, run the simulation and plot the results." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2025-04-03T12:16:09.234281Z", "iopub.status.busy": "2025-04-03T12:16:09.234010Z", "iopub.status.idle": "2025-04-03T12:16:10.161186Z", "shell.execute_reply": "2025-04-03T12:16:10.160433Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting RAT ───────────────────────────────────────────────────────────────────────────────────────────────────────────\n", "\n", "Elapsed time is 0.069 seconds\n", "\n", "Finished RAT ───────────────────────────────────────────────────────────────────────────────────────────────────────────\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHLCAYAAAAk8PeNAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAvgNJREFUeJzs3XdcVfX/wPHXuRe4bBCU5QAHbsU9S6Q0NTUr0zTLlWRuMy1Nc1TONEfOLFdamKXmz1K/qeAWceDIrTgRF7LH5d57fn9cuEogMi5c4H6ejwcPuZ/7Oee87/Vy7/t+piTLsowgCIIgCIIZUpg6AEEQBEEQBFMRiZAgCIIgCGZLJEKCIAiCIJgtkQgJgiAIgmC2RCIkCIIgCILZEomQIAiCIAhmSyRCgiAIgiCYLZEICYIgCIJgtkQiJAiCIAiC2RKJkCAIgiAIZkskQoIgCMXA/v376dq1K15eXkiSxNatWwv9mnfv3uX999/H1dUVGxsb6tWrx/Hjxwv9uoJQnIhESBAEoRhITEzEz8+PJUuWFMn1njx5QuvWrbG0tGTHjh2cP3+eefPmUaZMmSK5viAUF5LYdFUQBKF4kSSJLVu28OabbxrKUlNTmThxIr/++isxMTHUrVuX2bNn07Zt23xdY/z48Rw6dIgDBw4YJ2hBKKFEi5AgCEIJMHz4cI4cOUJQUBBnzpyhR48edOzYkStXruTrfNu2baNJkyb06NEDNzc3GjZsyMqVK40ctSAUf6JFSBAEoZj5b4vQrVu3qFKlCrdu3cLLy8tQr127djRr1owZM2bk+RrW1tYAjBkzhh49ehAWFsaoUaNYvnw5/fr1M8rjEISSwMLUAQiCIAg5O3v2LFqtlurVq2cqT01NxdXVFYCLFy9Sq1atHM/z+eefM2vWLAB0Oh1NmjQxJFENGzbk3LlzIhESzI5IhARBEIq5hIQElEolJ06cQKlUZrrP3t4egCpVqnDhwoUcz5ORNAF4enpSu3btTPfXqlWLP/74w0hRC0LJIBIhQRCEYq5hw4ZotVoePHjAyy+/nG0dKysratasmetztm7dmkuXLmUqu3z5Mt7e3gWKVRBKGpEICYIgFAMJCQlcvXrVcDsiIoLw8HBcXFyoXr06ffr0oW/fvsybN4+GDRvy8OFD9uzZQ/369encuXOer/fJJ5/QqlUrZsyYQc+ePTl27Bg//PADP/zwgzEfliAUe2KwtCAIQjEQEhJCQEBAlvJ+/fqxZs0a0tLS+Oabb1i3bh13796lbNmytGjRgmnTplGvXr18XXP79u1MmDCBK1euULlyZcaMGUNgYGBBH4oglCgiERIEQRAEwWyJdYQEQRAEQTBbIhESBEEQBMFsicHSL6DT6YiMjMTBwQFJkkwdjiCUGrIsEx8fj5eXFwqFeX4nE+8vglB4cvseIxKhF4iMjKRixYqmDkMQSq3bt29ToUIFU4dhEuL9RRAK34veY0Qi9AIODg6A/ol0dHQ0cTSCUHrExcVRsWJFw9+YORLvL4JQeHL7HiMSoRfIaK52dHQUb1SCUAjMuUtIvL8IQuF70XuMeXbMC4IgCIIgIBIhQRAEQRDMmEiEBEEQBEEwW2KMkCA8h1arJS0tzdRhlGhWVlZmOzXemMRrUShMlpaWKJVKU4dhMiIREoT/kGWZqKgoYmJiTB1KiadQKKhcuTJWVlamDqVEEq9Foag4Ozvj4eFhlpMXRCIkCP+R8cHj5uaGra2tWb4xGEPGYoH37t2jUqVK4nnMB/FaFAqbLMskJSXx4MEDADw9PU0cUdETiZAgPEOr1Ro+eFxdXU0dTolXrlw5IiMj0Wg0WFpamjqcEkW8FoWiYmNjA8CDBw9wc3Mzu24y0XkvCM/IGIdha2tr4khKh4wuMa1Wa+JISh7xWhSKUsbrzBzHoolESBCyIbogjEM8jwUnnkOhKJjz60wkQoIgCIIgmC2RCAmCIAiCifTv358333zT1GGYNZEICUIp0b9/fyRJQpIkLC0tcXd3p3379qxatQqdTgdAdHQ0I0aMoEaNGtjY2FCpUiVGjhxJbGxslvOtXbuWpk2bYmtri4ODA/7+/mzfvr2oH5ZQwuTmdQhF81r08fExxGJjY4OPjw89e/Zk7969Rn3MBbFw4ULWrFlToHP8+++/dO/e3fB4FyxYYJTYzIWYNWYEk7aeJTpRbeownktloaRvS28aVipj6lCEQtaxY0dWr16NVqvl/v377Ny5k1GjRvH777+zbds2IiMjiYyMZO7cudSuXZubN2/y8ccfExkZye+//244z9ixY1m8eDHffPMNb775Jmlpaaxfv55u3bqxcOFChg8fbsJHKRR3L3odWlhYFNlr8auvviIwMBC1Ws2NGzdYv3497dq14+uvv2bixImF/VS8kJOTU4HPkZSURJUqVejRoweffPKJEaIyLyIRMoLgiw+5G5Ns6jBytO/yQ4I/bYuTrZjCXJqpVCo8PDwAKF++PI0aNaJFixa8+uqrrFmzhkGDBvHHH38Y6letWpXp06fz/vvvo9FosLCw4OjRo8ybN49FixYxYsQIQ93p06eTkpLCmDFj6NatGxUrVizyxyeUDLl5HdatW7dIXosODg6GWCpVqkSbNm3w9PRk8uTJvPPOO9SoUQOAffv2MW7cOE6fPo2Liwt9P3ifMaNHkChbkSSrGNCjK741a6NQKtn2+69YWloxfNxEXn/zHWZO+ox//t6Ga9lyjP96Ni8HtAf0syW/+nw0oYf38/jBAzzKV+Ddvh/S58OPDfF9+clQ4uNiWfDTBgA+7NEF31p1UKlUbP71ZyytrOjx/gCGjBn//Ofb05cPRumTOoXFZ0TGJHPmTkxe/suQNWoePElm0OYQ7sYX/1me1d3t+d8n/kY5l0iEzER0opr5uy8z9Y06pg5FKGKvvPIKfn5+bN68mUGDBmW5PzY2FkdHRyws9G8Hv/76K/b29gwePDhL3U8//ZTvvvuOP/74g9GjRxd26EIp8qLXIRTda3HUqFF8/fXX/Pnnn3z22WfcvXuX119/nf79+7Nu3TrOnztL4OCPidMoGTJmPBaSjEKS2fb7rwwaMoLft//D39u2MP2LTwnZtZ32HTszbORo1qxcxsRRH7Mv7DQ2NrakaTV4eXny/YpVOJdx4dTxY3z52Ri83N14/Y03AVCmn9tGqe82VEjwf7//yoCPhvL7X//j1Ikwxo8eTosWLXg5oB0Az53fJelnf6ksFDhYWzwtfAEJ0KbpiLdU0LyKC7GpT+/579HZTi57pjBL/f/Gl+XQrCfMKMrpXA2M2MMhEiEj2DK0FVpZNnUY2XqSmEb3ZYdJTtOy7sgN3m1akVqejqYOq0Tp+v1BHsanvriikZVzUPF/I14yyrlq1qzJmTNnspQ/evSIr7/+mo8++shQdvnyZapWrZrtthheXl44Ojpy+fJlo8Ql5F2yWsu1hwlFes2q5eyxsSr4InvPex1C0b4WXVxccHNz48aNGwAsXbqUihUrsnjxYiSgsrPEx2MmsGDmNOZM/wp7a0tsrCxp2KABC+bMAODVlo34cekivMt7MmncaADqVavIL+tWk/TwDvVbtABg8XdzDNd9pUVDIi6e5cDuvxn18UAAHG1V6NRW+Hq6AGBjZUEDPz8WzZ0FQPvWTfl9/RounDxKv55vvvCxWSgkXO1VVC5rn6fnJCVFiTpGxYy3amJtbZ2nY0s6kQgZgZtj8X3ReDrZMPyVany76xI6Gab8+S8bB7cw6zUj8uphfCpRcSmmDqNAZFnO8n8eFxdH586dqV27NlOnTs1SXyierj1MoMv3B4v0mttHvETd8gUfy5Ld6xBM81p8NpYLFy7QsmVLJElClxLHY40NDZo2JykxgScPo3CoVAmA+vXrG45XKpW4urpSr149Q5m7uzuAYbsKgCVLlrBq1Spu3bpFcnIyarWaBg0a5Bjbs9cB/bYXz55TMC6RCJmBQS9XZtPx29x4nMSxG9FsOx1JtwblTR1WiVHOQVXir3vhwgUqV65suB0fH0/Hjh1xcHBgy5Ytmba/qF69OgcPHkStVmf5Jh4ZGUlcXBzVq1c3WmxC3lQtZ892I7UU5uWaxvDf1yGY5rX4+PFjHj58mCUWAE38Ix7jkm3C9t9tYjJmxj17GzDMjgsKCmLs2LHMmzePli1b4uDgwLfffktoaGiO8WV3nWdn3AnGJRIhM6CyUDKlax0GrAkDYMbfF3i1ljv2KvHfnxvG6p4ylb1793L27FnDbJK4uDg6dOiASqVi27ZtWZrBe/XqxaJFi1ixYkWmAaoAc+fOxdLSku7duxdZ/EJmNlZKo7TOFLX/vg7BdK/FhQsXolAoDOv31KpViz/++ANZp0OtTkUGLoUfx8HBgQoVKuT5/BkOHTpEq1atGDp0qKHs2rVr+T6fUDjEJ6GZCKjpRrtabuy+8ID7caksDb7KZx1rmjoswchSU1OJiorKNG155syZdOnShb59+xIXF8drr71GUlIS69evJy4ujri4OEC/QapSqaRly5aMGjWKcePGoVarM01ZXrhwIQsWLBAzxoQcveh1CBTZazE+Pp6oqCjS0tKIiIhg/fr1/Pjjj8ycOZNq1aoBMHToUBYsWMCIYUN4t1dPTl49xfw50xkzZgwKRf6X2/P19WXdunXs2rWLypUr8/PPPxMWFpZtS1RBqNVqzp8/b/j97t27hIeHY29vb3iMwvOJRMiMfNmlNvsuPyRNK7P9zD2RCJVCO3fuxNPTEwsLC8qUKYOfnx+LFi2iX79+KBQKTp48aWiW/+8bZEREBD4+PgAsWLCA+vXrs3TpUiZNmoRSqaRRo0Zs3bqVrl27FvXDEkqYF70OgSJ7LU6ePJnJkydjZWWFh4cHLVq0YM+ePQQEBBjqlC9fnr///puxY0bzw6o1ODmXYcCAgUyaNKlAz8PgwYM5deoU7777LpIk0bt3b4YOHcqOHTsKdN7/ioyMpGHDhobbc+fOZe7cufj7+xMSEmLUa5VGkixGReYoLi4OJycnw7TOkq7bkkOcvh0DwL/TOmAnuscySUlJISIigsqVK5vdzInCkNPzWdr+tvIjp+dAvBaLnvpRBFdTHNFJFiWy+7EgSuPrLbfvMWKLDTNT093B8Pvl+/EmjEQQBKF4UWiS0aJAqRCzas2JSITMTA0PkQgJgiBkIcsotGpkJCxEImRWRCJkZp5NhC5GiURIEAQBAK2aFPRT9C2V4qPRnIj/bTPzbCJ0SSRCgiAIeppUImT9nmQqS/HRaE7E/7aZKWuvoqy9/luPSIQEoWDu3r3L+++/j6urKzY2NtSrV4/jx4+bOiwhH2RNKtr0j0SVRcG3ExFKDpEImaGMVqHHiWoeJRT9HlqCUBo8efKE1q1bY2lpyY4dOzh//jzz5s2jTBnjbQYpFB2t5ul7oaVSjBEyJ2LutBmq7u7AoauPAX2rUNlqptlCQhBKstmzZ1OxYkVWr15tKDP2QnlC0dFp0gy/W4gxQmZF/G+boZpiwLQgFNi2bdto0qQJPXr0wM3NjYYNG7Jy5UpThyXkk06rAcBCocDaQnw0mhPxv22Gang8XVjqUlScCSMRhJLr+vXrLFu2DF9fX3bt2sWQIUMYOXIka9eufe4xqamphq0knt1SQjA9WacFwMnWMtsNV4XSSyRCZqi6+9OdpC/dTzBhJIJQcul0Oho1asSMGTNo2LAhH330EYGBgSxfvvy5x8ycORMnJyfDj9izrZiQZeT03d2LenhQ//79DZu/CqYhEiEzZGtlQSUXWwCu3I9HpxO7rJQGDx8+ZMiQIVSqVAmVSoWHhwcdOnTg0KFDAPj4+CBJEkFBQVmOrVOnDpIksWbNGkC/63fHjh0z1dm5cyeSJDF16tRM5VOnTqVSpUqF8piKM09PT2rXrp2prFatWty6deu5x0yYMIHY2FjDz+3btws7zCLXv39/JElCkiQsLS1xd3enffv2rFq1Cl16sgEQHR3NiBEjqFGjBjY2NlSqVImRI0cSGxub5Zxr166ladOm2Nra4uDggL+/P9u3b39hLBmveUmSsLGxwcfHh549e7J3797MFWUdOvQZkKKIF1NcuHCh4e8uv1auXMnLL79MmTJlKFOmDO3atePYsWPGCdAMiETITGXMHEtSa7n9JMnE0QjG0L17d06dOsXatWu5fPky27Zto23btjx+/NhQ57+DewGOHj1KVFQUdnZ2hrKAgAAOHTqERqMxlAUHB1OxYsUsmzgGBwdn2sDSXLRu3ZpLly5lKrt8+TLe3t7PPUalUuHo6JjppzTq2LEj9+7d48aNG+zYsYOAgABGjRpFly5dDK+pyMhIIiMjmTt3LufOnWPNmjXs3LmTDz/8MNO5xo4dy+DBg3n33Xc5c+YMx44d46WXXqJbt24sXrz4hbF89dVX3Lt3j0uXLrFu3TqcnZ1p164d06dPf1pJm2aYOq8s4m4xJycnnJ2dC3SOkJAQevfuTXBwMEeOHKFixYq89tpr3L171zhBlnaykKPY2FgZkGNjY00dilHN3XVR9v58u+z9+XZ557l7pg6n2EhOTpbPnz8vJycnmzqUPHny5IkMyCEhIc+t4+3tLY8fP15WqVTyrVu3DOWBgYHyiBEjZCcnJ3n16tWyLMvypUuXZEA+cuSIoV6zZs3kJUuWyNbW1obnJzk5WVapVIbj/iun57Ok/20dO3ZMtrCwkKdPny5fuXJF3rBhg2xrayuvX78+1+fI6Tkoqa/Ffv36yd26dctSvmfPHhmQV65c+dxjf/vtN9nKykpOS0uTZVmWjxw5IgPyokWLstQdM2aMbGlpmem1/F/e3t7y/Pnzs5RPnjxZVigU8sWLF/UFKXHytk3r5Tp+jWQrKyvZw8ND/vzzzw1xyLIs+/v7y8OHD5dHjRolOzs7y25ubvIPP/wgJyQkyP3795ft7e3lqlWryn///bfhGI1GIw8cOFD28fGRra2t5erVq8sLFizI8fny9/eXR4wYIY8bN04uU6aM7O7uLk+ZMuW5jzE7Go1GdnBwkNeuXZvrY0rq6y0nuX2PES1CZqq6u1hhujSxt7fH3t6erVu3kpr6/LWh3N3d6dChg2FAb1JSEhs3bmTgwIGZ6lWvXh0vLy+Cg4MBiI+P5+TJk/To0QMfHx+OHDkCwOHDh0lNTTXLFqGmTZuyZcsWfv31V+rWrcvXX3/NggUL6NOnj6lDK5ZeeeUV/Pz82Lx583PrZOwSbmGhX9nl119/xd7ensGDB2ep++mnn5KWlsYff/yR51hGjRqFLMv8+eefANy9fYtefQOp69eQQ6HHWbZsGT/99BPffPNNpuPWrl1L2bJlOXbsGCNGjGDIkCH06NGDVq1acfLkSV577TU++OADkpL0rew6nY4KFSqwadMmzp8/z+TJk/niiy/47bffcoxv7dq12NnZERoaypw5c/jqq6/4559/cv34kpKSSEtLw8XFJY/PjHkS6wiZqWen0F8Sm6/mbIU/JDwo+uvau8HgfbmqamFhwZo1awyDdRs1aoS/vz+9evWifv36meoOHDiQTz/9lIkTJ/L7779TtWpVGjRokOWcAQEBhISEMGHCBA4cOED16tUpV64cbdq0ISQkxHB/5cqVc+wOKs26dOlCly5divai6iR4dLlor1m2OljZFvg0NWvW5MyZM9ne9+jRI77++ms++ugjQ9nly5epWrUqVlZWWep7eXnh6OjI5ct5fy5cXFxwc3Pjxo0bACxd8SNeXp5M+OZbqrk50KRBPSIjI/n888+ZPHkyCoW+zcDPz49JkyYB+vFes2bNomzZsgQGBgIwefJkli1bxpkzZ2jRogWWlpZMmzbNcN3KlStz5MgRfvvtN3r27Pnc+OrXr8+UKVMA8PX1ZfHixezZs4f27dvn6vF9/vnneHl50a5duzw/N+ZIJEJmyqesHVZKBWqtTrQIvUjCA4iPNHUUL9S9e3c6d+7MgQMHOHr0KDt27GDOnDn8+OOP9O/f31Cvc+fODB48mP3797Nq1aosrUEZ2rZty+jRo0lLSyMkJIS2bdsC4O/vz4oVKwAMCZFQhB5dhh/8i/aaH+0DrwYFPo0sy9lOTY+Li6Nz587Url07y2B8WS6cyRzPxnL+4iUaNWqMJElkjJVu3bo1CQkJ3LlzxzAZ4NkvFUqlEldXV+rVq2coc3d3B+DBg6dfnJYsWcKqVau4desWycnJqNXqbL94POu/X148PT0znTMns2bNIigoiJCQEKytrXN1jLkTiZCZslQqqOpmz4V7cUQ8SiRVoxX76zyPvVuJua61tTXt27enffv2fPnllwwaNIgpU6ZkSoQsLCz44IMPmDJlCqGhoWzZsiXbcwUEBJCYmEhYWBjBwcGMGzcO0CdCAwcOJDo6mtDQ0Gy7LYRCVLa6PjEp6msawYULF7Ksvh0fH0/Hjh1xcHBgy5YtWFpaGu6rXr06Bw8eRK1WZ2kVioyMJC4ujurV8x7b48ePefjw4TOxyMjps8ZyWkPo2dgy6j5blnFsxuy4oKAgxo4dy7x582jZsiUODg58++23hIaG5hhfdtd5dsbd88ydO5dZs2axe/fuLMmU8HwiETJjNdz1iZBWJ3P1QQJ1vJxMHVLxlMvuqeKodu3abN26NUv5wIEDmTt3Lu++++5z98aqWrUqFStWZNu2bYSHh+Pvr2+FKF++POXLl2fevHmo1WrRIlTUrGyN0jpT1Pbu3cvZs2f55JNPDGVxcXF06NABlUrFtm3bsrRg9OrVi0WLFrFixQpGjBiR6b65c+diaWlJ9+7d8xzLwoULUSgUhvV7avpW4bdtu5Bl2dAidOjQIRwcHKhQoUKez5/h0KFDtGrViqFDhxrKrl27lu/z5WTOnDlMnz6dXbt20aRJk0K5RmklEiEzpl9hWt/l829knEiESrDHjx/To0cPBg4cSP369XFwcOD48ePMmTOHbt26Zalfq1YtHj16hK1tzuM+AgICWLp0KdWqVTM0+4O+Vej77783DKoWhGelpqYSFRWFVqvl/v377Ny5k5kzZ9KlSxf69u0L6JOg1157jaSkJNavX59ppe1y5cqhVCpp2bIlo0aNYty4cajVat58803S0tJYv349CxcuZMGCBS9clDI+Pp6oqCjS0tKIiIhg/fr1/Pjjj8ycOZNq1aoB8HH/XixcvpqZX37GxHGfcP3qFaZMmcKYMWMM44Pyw9fXl3Xr1rFr1y4qV67Mzz//TFhYmNH3pJs9ezaTJ0/ml19+wcfHh6ioKODpJAohZyIRMmONvZ+2BOy98ICeTcQqtyWVvb09zZs3Z/78+Vy7do20tDQqVqxIYGAgX3zxRbbHuLq6vvC8AQEBrFu3zjA+KIO/vz+rV6/mvffeM0b4Qimzc+dOPD09sbCwoEyZMvj5+bFo0SL69etnSCxOnjxp6CLKSEgyRERE4OPjA8CCBQuoX78+S5cuZdKkSSiVSho1asTWrVvp2rXrC2OZPHkykydPxsrKCg8PD1q0aMGePXsytWS6u7mzeO0mvps+mSaNGuLi4sKHH35oGBidX4MHD+bUqVO8++67SJJE7969GTp0KDt27CjQef9r2bJlqNVq3nnnnUzlU6ZMyTLmSshKkgtrJFopERcXh5OTk2FaZ2mi1ck0m76bx4lqbCyVnJrcHmtL8x4nlJKSQkREBJUrVxYDDY0gp+ezNP9t5VZOz4F4LRad2Mir3NSVBaBueScUZrjXWGl8veX2PcYs1hF66623KFOmTJZs2dwpFRLtaum7O5LTtOy//NDEEQmCIJjAM+0B5pcCCWaRCI0aNYp169aZOoxiqUPdp+M+dv1734SRCIIgmIAsA/oZWYr0fckE82IWiVDbtm1xcHB4cUUz1KpqWeys9N1hey7eR6N98RRNQRCEUkPWPjN13sSxCCZh8kRo//79dO3aFS8vLyRJynaq75IlS/Dx8cHa2prmzZuLXXWNyNpSSdua+vVqYpLSOBYRbeKIBEEQipDumURIdIyZJZMnQomJifj5+bFkyZJs79+4cSNjxoxhypQpnDx5Ej8/Pzp06JBplc0GDRpQt27dLD+RkcV/NeDioEMdD8Pvu/6NMmEkgiAIRUzWkjFCSCHyILNk8unznTp1olOnTs+9/7vvviMwMJABAwYAsHz5cv766y9WrVrF+PHjAQgPDzdaPKmpqZk2rcxY16I0C6hRzrDdxv/O32fqG3VEP7kgCOZBpzO0CJnjbDGhGLQI5UStVnPixIlMG8cpFAratWtn2P3a2GbOnImTk5Ph50WLdZUGDtaWtKqmX1PmXmwKZ+7EmjgiQRCEIqLToiF92RCRB5mlYp0IPXr0CK1Wm2lFW9BvbJexcmZutGvXjh49evD3339ToUKFHJOoCRMmEBsba/i5fft2vuMvSZ7tHtspuscEQTAXspY0Wd854mKXdZd7ofQzeddYUdi9e3eu66pUKlQqVSFGUzy1q+XOROksOhn+PHWXsa/VQCk6zAVBKO2eGSztZGP5gspCaVSsW4TKli2LUqnk/v3M69vcv38fDw+P5xwl5Ec5BxX+1csBEBmbwsGrj0wckSAIQhGQtegMs8ZMb+rUqTRo0MDUYZiVYp0IWVlZ0bhxY/bs2WMo0+l07Nmzh5YtW5owstLp3aZPx0P9FmYeXYKlSf/+/Q27aT8rJCQESZKIiYkhJCSEbt264enpiZ2dHQ0aNGDDhg1ZjomOjmb06NF4e3tjZWWFl5cXAwcO5NatW0XwSISS7OHDhwwZMoRKlSqhUqnw8PCgQ4cOHDp0yFDHx8cHSZIICgrKcnydOvrJGmvWrAH0O9B37NgxU52dO3ciSVKWfbSmTp1KpUqVnhtb27ZtkdIXTVSpVJQvX56uPT7g7/S9v4rDWOmxY8dm+szLj3v37vHee+9RvXp1FAoFo0ePNk5wpZTJE6GEhATCw8MNM78iIiIIDw83vOGOGTOGlStXsnbtWi5cuMCQIUNITEw0zCITjOeVmu64pveR/+98FNGJahNHJBjb4cOHqV+/Pn/88QdnzpxhwIAB9O3bl+3btxvqREdH06JFC3bv3s3y5cu5evUqQUFBXL16laZNm3L9+nUTPgKhuOvevTunTp1i7dq1XL58mW3bttG2bVseP36cqV7FihVZvXp1prKjR48SFRWFnZ2doSwgIIBDhw6h0WgMZcHBwVSsWJGQkJBMxwcHB2faTDU7gYGB3Lt3j2vXrvHHH39Qq0Y1Rg0bylefj6Y4tAnZ29vnakPknKSmplKuXDkmTZqEn5+fkSIrxWQTCw4OloEsP/369TPU+f777+VKlSrJVlZWcrNmzeSjR48WWXyxsbEyIMfGxhbZNU3pm+3/yt6fb5e9P98u/3TguqnDKXLJycny+fPn5eTkZFOHkmf9+vWTu3XrlqU842/syZMn2R73+uuvywMGDDDc/vjjj2U7Ozv53r17meolJSXJ5cuXlzt27JjrmHJ6Ps3tbys7OT0HJfG1+OTJExmQQ0JCcqzn7e0tjx8/XlapVPKtW7cM5YGBgfKIESNkJycnefXq1bIsy/KlS5dkQD5y5IihXrNmzeQlS5bI1tbWhucnOTlZVqlUhuOy4+/vL48aNSpTmebRdXnm3PkyIO/a9T9D+ZkzZ+SAgADZ2tpadnFxkQMDA+X4+HjD/Rl/b9OnT5fd3NxkJycnedq0aXJaWpo8duxYuUyZMnL58uXlVatWZbreZ599Jvv6+so2NjZy5cqV5UmTJslqtdpw/5QpU2Q/P78s1/n2229lDw8P2cXFRR46dGimY3KS3WPOTkl8vb1Ibt9jTD5Yum3btsjPbHiXneHDhzN8+PAiisi8vdu0IisPRADw2/HbDGjtY/ZrCr27/V0eJRf9mKmyNmXZ2GVjoV8nNjaWWrVqAfqu56CgIPr06ZNlHJ6NjQ1Dhw5l0qRJREdH4+LiUuixCVkla5KJiI0o0mtWdqqMjYXNC+vZ29tjb2/P1q1badGiRY4TT9zd3enQoQNr165l0qRJJCUlsXHjRvbt25dpb8jq1avj5eVFcHAwLVq0ID4+npMnT7J9+3a+//57jhw5QkBAAIcPHyY1NfWFLUJZyDre6tGLmV9PY8uWzbz2WnsSExPp0KEDLVu2JCwsjAcPHjBo0CCGDx9u6LID2Lt3LxUqVGD//v0cOnSIDz/8kMOHD9OmTRtCQ0PZuHEjgwcPpn379lSoUAEABwcH1qxZg5eXF2fPniUwMBAHBwc+++yz54YYHByMp6cnwcHBXL16lXfffZcGDRoQGBiYt8cqZMvkiZBQvFRzc6BRJWdO3orhYlQ8Z+7E4lfR2dRhmdSj5Ec8SHrw4orFwPbt27G3t89UptVqn1v/t99+IywsjBUrVgD68R0xMTGGxOi/atWqhSzLXL16lWbNmhkvcCHXImIjeHf7u0V6zY1dNlLbtfYL61lYWLBmzRoCAwNZvnw5jRo1wt/fn169elG/fv0s9QcOHMinn37KxIkT+f3336latWq2A4UDAgIICQlhwoQJHDhwgOrVq1OuXDnatGlDSEiI4f7KlSvj7e2dtwcna5EUCryrVOPmzZsA/PLLL6SkpLBu3TpDN93ixYvp2rUrs2fPNizp4uLiwqJFi1AoFNSoUYM5c+aQlJTEF198AeiXY5k1axYHDx6kV69eAEyaNMlwaR8fH8aOHUtQUFCOiVCZMmVYvHgxSqWSmjVr0rlzZ/bs2SMSISMRiZCQxbtNK3LyVgwAQWG3zD4RKmtTtsRcNyAggGXLlmUqCw0N5f33389SNzg4mAEDBrBy5Urq1KmT6b4XtdIKplPZqXKRtBT+95q51b17dzp37syBAwc4evQoO3bsYM6cOfz444/0798/U93OnTszePBg9u/fz6pVqxg4cGC252zbti2jR48mLS2NkJAQ2rZtC4C/v78hic9IiPIsfWVpWZYNrd8XLlzAz88v01il1q1bo9PpuHTpkiERqlOnDgrF06G27u7u1K1b13BbqVTi6uqaaUuojRs3smjRIq5du0ZCQgIajQZHR8ccQ6xTpw5KpdJw29PTk7Nnz+b9sQrZEomQkEXn+l589X/nSVRr2XLqLp93rImzrfkuNFbUHzoFYWdnR7Vq1TKV3blzJ0u9ffv20bVrV+bPn0/fvn0N5eXKlcPZ2ZkLFy5ke/4LFy4gSVKWawhFx8bCJletM6ZkbW1N+/btad++PV9++SWDBg1iypQpWRIhCwsLPvjgA6ZMmUJoaChbtmzJ9nwBAQEkJiYSFhZGcHAw48aNA/SJ0MCBA4mOjiY0NJTBgwfnPVhZh0ar41bENfxbt8jToZaWmdcdkiQp2zKdTgfAkSNH6NOnD9OmTaNDhw44OTkRFBTEvHnz8nydjHMKBWfyWWNC8WOvsqBHE/1U+pQ0HUFiKn2pEhISQufOnZk9ezYfffRRpvsUCgU9e/bkl19+ybJ6e3JyMkuXLqVDhw5ifJCQJ7Vr1yYxMTHb+wYOHMi+ffvo1q0bZcqUybZO1apVqVixItu2bSM8PBx/f38AypcvT/ny5Zk3bx5qtTp/LUKyji2bgoiLjaF79+6Avgv49OnTmWI+dOiQoQssvw4fPoy3tzcTJ06kSZMm+Pr6GrrjBNMRiZCQrX6tfAxraqw7fAONVnz7KA2Cg4Pp3LkzI0eOpHv37kRFRREVFUV0dLShzowZM/Dw8KB9+/bs2LGD27dvs3//fjp06EBaWhpLliwx4SMQirPHjx/zyiuvsH79es6cOUNERASbNm1izpw5dOvWLdtjatWqxaNHj7JMpf+vgIAAli5dSrVq1TJtu+Tv78/3339vGFT9IklJSURFRXHnzh2OHj3KhG/mMe2LcfT84ENDItWnTx+sra3p168f586dIzg4mBEjRvDBBx9k2fIpL3x9fbl16xZBQUFcu3aNRYsWPbcVrKAylqVJSEjg4cOHhIeHc/78+UK5VkknEiEhW5XL2hFQww3QrzT9v/P3X3CEUBKsXbuWpKQkZs6ciaenp+Hn7bffNtRxdXXl6NGjBAQEMHjwYKpWrUrPnj2pWrUqYWFhVKlSxYSPQCjO7O3tad68OfPnz6dNmzbUrVuXL7/8ksDAQBYvXvzc41xdXbGxyXlWWkBAAPHx8YbxQRn8/f2Jj4/PdWvQypUr8fT0pGrVqrz99ttcuHydeUt+ZNKMp91Ttra27Nq1i+joaJo2bco777zDq6++muNjyI033niDTz75hOHDh9OgQQMOHz7Ml19+WaBzPk/Dhg1p2LAhJ06c4JdffqFhw4a8/vrrhXKtkk6SxajIHMXFxeHk5ERsbOwLB7SVNgeuPOSDn44B0NSnDJs+bmXiiApfSkoKERERVK5cGWtra1OHU+Ll9Hya899WhpyeA/FaLAKyDPfC+VfnjU5SUq+8k6kjMpnS+HrL7XuMaBESnuulamXxddNPxQ678YSzd2JNHJEgCIIRyRld/ua9Vpq5E4mQ8FySJDGg9dNpsysPiK0VBEEoReSna2yJVMh8iURIyNFbDcsb9h/bfiaSm4+zn/khCIJQ4qS3CMkiDTJrIhEScmRjpWRAax8AdDL8sF+0CgmCUEpkrMUjiRYhcyYSIeGFPmjhg52VflXTTSfu8CA+xcQRFT4xh8A4xPMoFGvyM8uCiEzIbIlESHghJ1tL3m+h379HrdGx6uAN0wZUiDJWcE1KSjJxJKWDWq0GyLQ9gCAUG7JYH00QW2wIuTTwpcqsPnQDtVbH+qM3GeJfFSdbyxcfWMIolUqcnZ0NewPZ2toa9h8S8kan0/Hw4UNsbW2xsBBvNUIx9MwYIdEqYL7Eu5OQK+6O1nRvXJ5fj90mIVXDjwev8+lr+V9qvjjz8PAAyLRRopA/CoWCSpUqiWRSKJ6emTUm+sbMl0iEhFwb2rYav5+4Q5pWZtXBCAa2rkwZu9K3GaskSXh6euLm5kZaWpqpwynRrKysMu3OLQjFiqxDl54AFZdcferUqWzdupXw8HBTh2I2xDuUkGsVXWzpmb4Za6Jay4pSPoNMqVRibW0tfgrwI5Ig8/Pw4UOGDBlCpUqVUKlUeHh40KFDBw4dOmSo4+PjgyRJBAUFZTm+Tp06SJLEmjVrAOjVqxcdO3bMVGfnzp1IksTUqVMzlU+dOpVKlSo9N7a2bdsiSRKSJKFSqSjvW583+o1i99/b8v+AjWzs2LHs2bOnQOfYvHkz7du3p1y5cjg6OtKyZUt27dplpAhLH/EuJeTJ8FeqYaXUv2zWHr7Bw/hUE0ckCEJx0r17d06dOsXatWu5fPky27Zto23btjx+/DhTvYoVK2bZaPXo0aNERUVhZ2dnKAsICODQoUNoNBpDWXBwMBUrViQkJCTT8cHBwS/ccywwMJB79+5x7do1/vh5JTWrV+WzYR8yZdzIfD5i47K3t8fV1bVA59i/fz/t27fn77//5sSJEwQEBNC1a1dOnTplpChLF5EICXni6WTDe83137iS07Ss2HfNxBEJgulMnTrV0MKQ8VOzZk1Th2UyMTExHDhwgNmzZxMQEIC3tzfNmjVjwoQJvPHGG5nq9unTh3379nH79m1D2apVq+jTp0+mwfUBAQEkJCRw/PhxQ1lISAjjx48nNDSUlBT9ch4pKSmEhoa+MBGytbXFw8ODChUq0KJJQ6Z/MYbJM+ezacNadu/ebah39uxZXnnlFWxsbHB1deWjjz4iISHBcH///v158803mTFjBu7u7jg7O/PVV1+h0WgYN24cLi4uVKhQIUuy9/nnn1O9enVsbW2pUqUKX375ZaYu+KlTp9KgQYMs15k7dy6enp64uroybNiwHLvtFyxYwGeffUbTpk3x9fVlxowZ+Pr68n//9385PjfmSiRCQp4NbVsVlYX+pfPz0Zvcjyv96woJwvPUqVOHe/fuGX4OHjxo6pBMxt7eHnt7e7Zu3Upqas6txe7u7nTo0IG1a9cC+iUrNm7cyMCBAzPVq169Ol5eXgQHBwMQHx/PyZMn6dGjBz4+Phw5cgSAw4cPk5qamutd6AGQtWiReKNHb5ycndm8eTMAiYmJdOjQgTJlyhAWFsamTZvYvXs3w4cPz3T43r17iYyMZP/+/Xz33XdMmTKFLl26UKZMGUJDQ/n4448ZPHgwd+7cMRzj4ODAmjVrOH/+PAsXLmTlypXMnz8/xzCDg4O5du0awcHBrF27ljVr1hi6DnNDp9MRHx+Pi4tL7p8bMyIGSwt55uZoTd+W3qw8EEGqRsfS4KtM61bX1GEJgklYWFgYZhoWBV1yMqnXi3Z8nqpKFRQ2Ni+sZ2FhwZo1awgMDGT58uU0atQIf39/evXqRf369bPUHzhwIJ9++ikTJ07k999/p2rVqplaQzIEBAQQEhLChAkTOHDgANWrV6dcuXK0adOGkJAQw/2VK1fG29s7148rVQu3ZTckhQKfKtW4ceMGAL/88gspKSmsW7fO0E23ePFiunbtyuzZs3F3dwfAxcWFRYsWoVAoqFGjBnPmzCEpKYkvvvgCgAkTJjBr1iwOHjxIr169AJg0aZLh+j4+PowdO5agoCA+++yz58ZZpkwZFi9ejFKppGbNmnTu3Jk9e/YQGBiYq8c5d+5cEhIS6NmzZ66fG3MiEiEhXwb7V2VD6C2S1Fp+PXabwf5V8XJ+8RulIJQ2V65cwcvLC2tra1q2bMnMmTOfO2A3NTU1U0tJXFxcnq+Xev06N7q/k+9488Pnj9+xqVMnV3W7d+9O586dOXDgAEePHmXHjh3MmTOHH3/8kf79+2eq27lzZwYPHsz+/ftZtWpVltagDG3btmX06NGkpaUREhJC27ZtAfD392fFihUAhoQoL1K0EqlYYqHImDmm//fChQv4+fllGqvUunVrdDodly5dMiRCderUyTQhwN3dnbp1n34pVCqVuLq6ZlqKY+PGjSxatIhr166RkJCARqPB0dExxzjr1KmTaVFST09Pzp49m6vH+MsvvzBt2jT+/PNP3NzccnWMuRGJkJAvZe1V9Gvlw7KQa6i1OhYHX2XGW/VMHZYgFKnmzZuzZs0aatSowb1795g2bRovv/wy586dw8HBIUv9mTNnMm3atAJdU1WlCj5//F6gc+TnmnlhbW1N+/btad++PV9++SWDBg1iypQpWRIhCwsLPvjgA6ZMmUJoaChbtmzJ9nwBAQEkJiYSFhZGcHAw48aNA/SJ0MCBA4mOjiY0NJTBgwfnKc6MLWAkZG5cv8ZLLZvn6fiMlegzSJKUbZkufU+zI0eO0KdPH6ZNm0aHDh1wcnIiKCiIefPm5fk6GefMSVBQEIMGDWLTpk20a9cuNw/JLIlESMi3j16uws9HbpKQquG3sNsMeqkyVcrZmzosQSgynTp1Mvxev359mjdvjre3N7/99hsffvhhlvoTJkxgzJgxhttxcXFUrFgxT9dU2NjkunWmuKhduzZbt27N9r6BAwcyd+5c3n33XcqUKZNtnapVq1KxYkW2bdtGeHg4/v7+AJQvX57y5cszb9481Gp1nluEMhKhLRt/ITbmCd27dwegVq1arFmzhsTEREOr0KFDhwxdYPl1+PBhvL29mThxoqHs5s2b+T5fTn799VcGDhxIUFAQnTt3LpRrlBZisLSQb2XsrAh8Wf9NUaOTmb3zookjEgTTcnZ2pnr16ly9ejXb+1UqFY6Ojpl+SpPHjx/zyiuvsH79es6cOUNERASbNm1izpw5dOvWLdtjatWqxaNHj7LMrvqvgIAAli5dSrVq1QxdU6BvFfr+++8Ng6pfJCkpiaioKO7cucOx4yeZP2MKUz8fzfsDAg2JVJ8+fbC2tqZfv36cO3eO4OBgRowYwQcffJDp2nnl6+vLrVu3CAoK4tq1ayxatOi5rWAF8csvv9C3b1/mzZtH8+bNiYqKIioqitjYWKNfqzQQiZBQIIFtKuPmoAJg17/3ORYRbeKIBMF0EhISuHbtGp6enqYOxSTs7e1p3rw58+fPp02bNtStW5cvv/ySwMBAFi9e/NzjXF1dsXnBYOyAgADi4+MN44My+Pv7Ex8fn+vWoJUrV+Lp6UnVqlXpN+hjrl+5xPwVa5gxd4Ghjq2tLbt27SI6OpqmTZvyzjvv8Oqrr+b4GHLjjTfe4JNPPmH48OE0aNCAw4cP8+WXXxbonNn54Ycf0Gg0DBs2DE9PT8PPqFGjjH6t0kCSM9oGhWzFxcXh5OREbGxsqfv2ZixBx24xfrN+4F6Dis5sGdpK7C0lvFBp+NsaO3YsXbt2xdvbm8jISKZMmUJ4eDjnz5+nXLlyLzw+p+cgJSWFiIgIKleujLW1dWE9BLP2OPI6d3UuWFsqsbFUUtHF1tQhmUxpfL3l9j1GtAgJBdajSUVquOsHhobfjuGvs/dMHJEgFI07d+7Qu3dvatSoQc+ePXF1deXo0aO5SoKEYuCZdgDx3c18icHSQoEpFRLjX6/JgNVhAMzeeZH2td1RWShfcKQglGzZ7ZUllBCyDDyTCJkuEsHERIuQYBRtq5ejdTX9/ji3o5P5+UjhzIQQBEEwCllGRnqaAIkmIbMlEiHBKCRJYkKnWob3ku/3XiUmSW3aoARBEJ7r6To8sixahMyZSIQEo6lb3om3GpYHIDY5je/+uWziiARBEJ5Dlnl2ppBoEDJfIhESjOqzDjWxtdKPDVp/9CYX7uV9CwFBEIRCJ+vIaAfKnBIJ5kYkQoJReThZMyygGgA6GaZs+xexQoMgCMWOrHua/sg8O1pIMDMiERKMbtDLlfF21a/HcSwimu1nxHR6QRCKGVnmaYuQ6BozZyIREoxOZaFkcpfahtsz/r5AklpjwogEQRD+45kWIdFobd5EIiQUildqutG2hn5RuXuxKSwNvmbiiARBEJ4h6zJNnzdVg5AkSc/dkFYoGiIREgqFJElM7lIbS6X+7eWH/de5/jDBxFEJglDY+vfvz5tvvpmlPCQkBEmSiImJMdzu1q0bnp6e2NnZ0aBBAzZs2JDluOjoaEaPHo23tzdWVlZ4eXkxcOBAbt26lWMcGdeTJAmFQoGTkxMNGzbks88+4969exgWU5T0g6VN1TV27949OnXqVKBz/PDDD7Rt2xZHR8dMz7GQOyIREgpNlXL2fPiSfnd6tVbHpK3nxMBpQRAAOHz4MPXr1+ePP/7gzJkzDBgwgL59+7J9+3ZDnejoaFq0aMHu3btZvnw5V69eJSgoiKtXr9K0aVOuX7/+wutcunSJyMhIwsLC+Pzzz9m9ezd169bl7NlzaGQlOhm0uqfjhYqah4cHKpWqQOdISkqiY8eOfPHFF0aKyryIREgoVCNfrUZ5Z/2u0oevPWZr+F0TRyQIQnHwxRdf8PXXX9OqVSuqVq3KqFGj6NixI5s3bzbUmThxIpGRkezevZtOnTpRqVIl2rRpw65du7C0tGTYsGEvvI6bmxseHh5Ur16dXr16cejQIcqVK8eQUZ+iQb/URxlbSxbPm0mFChVQqVQ0aNCAnTt3Gs5x48YNJEnit99+4+WXX8bGxoamTZty+fJlwsLCaNKkCfb29nTq1ImHDx8ajgsLC6N9+/aULVsWJycn/P39OXnyZKb4nu0ay7jO5s2bCQgIwNbWFj8/P44cOZLjYxw9ejTjx4+nRYsWL3w+hKxEIiQUKlsrC77qVsdw+5vtF4hNSjNhRIIgFFexsbG4uLgAoNPpCAoKok+fPnh4eGSqZ2Njw9ChQ9m1axfR0dF5uoaNjQ0ff/wxh46E8vDRIwA2rl7BgvnzmTt3LmfOnKFDhw688cYbXLlyJdOxU6ZMYdKkSZw8eRILCwvee+89PvvsMxYuXMiBAwe4evUqkydPNtSPj4+nX79+HDx4kKNHj+Lr68vrr79OfHx8jjFOnDiRsWPHEh4eTvXq1enduzcajZhwUljEpqtCoXu1ljsd63iw898oHieqmbXzIjPfrmfqsAShREpTa4mJSirSazp72GJplftNlLdv3469vX2mMq1Wm+Mxv/32G2FhYaxYsQKAhw8fEhMTQ61atbKtX6tWLWRZ5urVqzRr1izXsQHUrFkTgDu371C1bCXmfzePzz//nF69egEwe/ZsgoODWbBgAUuWLDEcN3bsWDp06ADAqFGj6N27N3v27KF169YAfPjhh6xZs8ZQ/5VXXsl03R9++AFnZ2f27dtHly5dnhvf2LFj6dy5MwDTpk2jTp06XL161RC3YFwiERKKxJQ3anPgykMS1Vp+PXaL7o3K08THxdRhCUKJExOVxG8zwor0mj2/aEq5Sg65rh8QEMCyZcsylYWGhvL+++9nWz84OJgBAwawcuVK6tSpk+m+whhXaDinpCAhPo7IyEhDMpOhdevWnD59OlNZ/fr1Db+7u7sDUK9evUxlDx48MNy+f/8+kyZNIiQkhAcPHqDVaklKSnrhQO9nr+Pp6QnAgwcPRCJUSEQiJBQJTycbPn2tBl9tPw/AZ3+c4e+RL2NtmftvmYIg6Ftnen7RtMivmRd2dnZUq1YtU9mdO3eyrbtv3z66du3K/Pnz6du3r6G8XLlyODs7c+HChWyPu3DhApIkZblObmSc06tiRXJup8rM0tLS8LuUPs3sv2U63dPNXPv168fjx49ZuHAh3t7eqFQqWrZsiVqd84bU2V3n2fMKxiUSIaHI9Gvlw5/hdzl9J5brDxOZv/syEzpl3+wtCEL2LK2UeWqdKc5CQkLo0qULs2fP5qOPPsp0n0KhoGfPnmzYsIGvvvoq0zih5ORkli5dSocOHQxjinIrOTmZH374gTatmuPqWpYkVHh5eXHo0CH8/f0N9Q4dOpTnLrf/OnToEEuXLuX1118H4Pbt2zxKH5ckFB9isLRQZJQKiW97+GGl1L/sVu6/TvjtGNMGJQiCSQQHB9O5c2dGjhxJ9+7diYqKIioqKtPg5xkzZuDh4UH79u3ZsWMHt2/fZv/+/XTo0IG0tLRM43ee58GDB0RFRXHlyhWCgoJo3bo1jx49Ytl305HTp8yPHTuW2bNns3HjRi5dusT48eMJDw9n1KhRBXqMvr6+/Pzzz1y4cIHQ0FD69OmDjY1Ngc6ZnaioKMLDw7l69SoAZ8+eJTw8PM8Dyc2VSISEIlXd3YFR7XwB/aas4zadJiUtL43TgiCUBmvXriUpKYmZM2fi6elp+Hn77bcNdVxdXTl69CgBAQEMHjyYqlWr0rNnT6pWrUpYWBhVqlR54XVq1KiBl5cXjRs3ZtasWbRr145z585Ru4avYYuNkSNHMmbMGD799FPq1avHzp072bZtG76+vgV6jD/99BNPnjyhUaNGfPDBB4wcORI3N7cCnTM7y5cvp2HDhgQGBgLQpk0bGjZsyLZt24x+rdJIksUKdzmKi4vDycmJ2NhYHB0dTR1OqaDR6nhr6WHO3o0FYGjbqnzWUQwCNDfibyvn5yAlJYWIiAgqV66MtbW1iSIsxZ7c4FKiHalYUr+Cs6mjMbnS+HrL7XuMaBESipyFUsHcHn6G7TeW77vGadFFJghCEZKf2XRVMG8iERJMooaHAyNfeaaL7PfTpGpEF5kgCEVE1mG6rVaF4kQkQoLJfNy2KnW89M2Vl+8n8O3OSyaOSBAEsyHLokVIAEQiJJiQZXoXWcYssh8PRhBy6cELjhIEQTAC0SIkpBOJkGBStTwdGd/p6UDpsZtO8zA+1YQRCYJgDjLGCIlUSBCJkGByA1r70LZGOQAeJagZ9/tpdDrRaC0IQiEyTJgWqZC5E4mQYHKSJDG3hx9l7VUAhFx6yOrDN0wblCAIpZusMyyoKJg3kQgJxUJZexXf9fQz3J694yLn0tcZEgRBMDZJTt+7S+RCZq/UJ0IxMTE0adKEBg0aULduXVauXGnqkITnaFO9HIEvVwZArdUxZMMJYpJy3pxQEAQhf8SsMUGv1CdCDg4O7N+/n/DwcEJDQ5kxYwaPHz82dVjCc4ztUAO/Ck4A3I5OZlRQOFoxXkgQBGNLnzVm6gYhSZLYunWriaMwb6U+EVIqldja2gKQmpqKLMuIXUWKL5WFkmXvN8bFzgqAfZcfsnD3ZRNHJQhCbvXv358333wzS3lISAiSJBETE2O43a1bNzw9PbGzs6NBgwZs2LAhy3HR0dGMHj0ab29vrKys8PLyYuDAgdy6dSvHODKuJ0kSCoUCJycnGjZsyGeffca9yLsmT4Ay3Lt3j06dOuX7+OjoaEaMGEGNGjWwsbGhUqVKjBw5kthYMbQgt0yeCO3fv5+uXbvi5eX13Mx4yZIl+Pj4YG1tTfPmzTl27FierhETE4Ofnx8VKlRg3LhxlC1b1kjRC4XBy9mGxb0bokh/p1q09yq7z983bVCCIBjV4cOHqV+/Pn/88QdnzpxhwIAB9O3bl+3btxvqREdH06JFC3bv3s3y5cu5evUqQUFBXL16laZNm3L9+vUXXufSpUtERkYSFhbG559/zu7du6lbrz5nL1wpFl1jHh4eqFSqfB8fGRlJZGQkc+fO5dy5c6xZs4adO3fy4YcfGjHKUk42sb///lueOHGivHnzZhmQt2zZkun+oKAg2crKSl61apX877//yoGBgbKzs7N8//59Qx0/Pz+5Tp06WX7u3r2b6VxRUVFyq1at5KioqFzHFxsbKwNybGxsgR6nkHfLQ67K3p9vl70/3y7XnbxTvvog3tQhCUYk/rZyfg6Sk5Pl8+fPy8nJySaILP/69esnd+vWLUt5cHCwDMhPnjx57rGvv/66PGDAAMPtjz/+WLazs5Pv3buXqV5SUpJcvnx5uWPHjs891/Oul5SUJNeoUV1u3bSBfOZ2tHzuToys1WrladOmyeXLl5etrKxkPz8/eceOHYZjIiIiZEDeuHGj/NJLL8nW1tZykyZN5EuXLsnHjh2TGzduLNvZ2ckdO3aUHzx4YDju2LFjcrt27WRXV1fZ0dFRbtOmjXzixIlM8Tz7uZdxnT/++ENu27atbGNjI9evX18+fPjwcx9ndn777TfZyspKTktLy/UxJfX1lpPcvseYvEWoU6dOfPPNN7z11lvZ3v/dd98RGBjIgAEDqF27NsuXL8fW1pZVq1YZ6oSHh3Pu3LksP15eXpnO5e7ujp+fHwcOHHhuPKmpqcTFxWX6EUzjozZVeL2eBwDxqRoGrA7jcYJYbFEQSqvY2FhcXFwA0Ol0BAUF0adPHzw8PDLVs7GxYejQoezatYvo6Og8XcPGxoaPAwM5FBbO40ePAFi4cCHz5s1j7ty5nDlzhg4dOvDGG29w5cqVTMdOmTKFSZMmcfLkSSwsLHjvvff47LPPWLhwIQcOHODq1atMnjzZUD8+Pp5+/fpx8OBBjh49iq+vL6+//jrx8fE5xjhx4kTGjh1LeHg41atXp3fv3mg0mlw/xozd1i0sLPLwzJivYv0sqdVqTpw4wYQJEwxlCoWCdu3aceTIkVyd4/79+9ja2uLg4EBsbCz79+9nyJAhz60/c+ZMpk2bVuDYhYKTJIlv3/Ej4lESF+7FcSs6icB1x/klsAXWlkpThycIJpGWmkL03TtFek2X8hWwVFnnuv727duxt7fPVKbV5ryp8m+//UZYWBgrVqwA4OHDh8TExFCrVq1s69eqVQtZlrl69SrNmjXLdWwANWtUByDy9i3Kubkxd+5cPv/8c3r16gXA7NmzCQ4OZsGCBSxZssRw3NixY+nQoQMAo0aNonfv3uzZs4fWrVsD8OGHH7JmzRpD/VdeeSXTdX/44QecnZ3Zt28fXbp0eW58Y8eOpXPnzgBMmzaNOnXqcPXqVWrWrPncYzI8evSIr7/+mo8++igXz4QAxTwRevToEVqtFnd390zl7u7uXLx4MVfnuHnzJh999JFhkPSIESOoV6/ec+tPmDCBMWPGGG7HxcVRsWLF/D0AocDsVBas6t+EN5cc4n5cKidvxfDpptN836shCkVxGe4oCEUn+u4d1k8YXaTXfH/mAtyrVMt1/YCAAJYtW5apLDQ0lPfffz/b+sHBwQwYMICVK1dSp06dTPfJhTC5RdbpkzJJkkiMjyMyMtKQzGRo3bo1p0+fzlRWv359w+8Zn0vPfp64u7vz4MHT/RLv37/PpEmTCAkJ4cGDB2i1WpKSkl440PvZ63h6egLw4MGDFyZCcXFxdO7cmdq1azN16tQc6wpPFetEyBiaNWtGeHh4ruurVKoCDVwTjM/TyYaf+jWl54ojJKm1/HXmHhXK2DChU/bfFAWhNHMpX4H3Zy4o8mvmhZ2dHdWqZU6c7tzJvhVr3759dO3alfnz59O3b19Debly5XB2dubChQvZHnfhwgUkScpyndy4cPESAF4VK5GXFRUtLS0Nv0uSlG2ZTqcz3O7Xrx+PHz9m4cKFeHt7o1KpaNmyJWp1zuujZXedZ8+bnfj4eDp27IiDgwNbtmzJdA4hZ8U6ESpbtixKpZL79zPPGLp//36WPmOhdKtb3onvezckcN1xdDKs2HcdF1srBvtXNXVoglCkLFXWeWqdKc5CQkLo0qULs2fPztKVo1Ao6NmzJxs2bOCrr77K9J6fnJzM0qVL6dChg2FMUW4lJyfzw0+raNOiEWVcy2KhUODl5cWhQ4fw9/c31Dt06FCeu9z+69ChQyxdupTXX38dgNu3b/MofVySMcXFxdGhQwdUKhXbtm3D2jr33ZhCMZg+nxMrKysaN27Mnj17DGU6nY49e/bQsmVLE0YmmMKrtdyZ9sbTZvOZOy7y67Gcm5gFQSiegoOD6dy5MyNHjqR79+5ERUURFRWVafDzjBkz8PDwoH379uzYsYPbt2+zf/9+OnToQFpaWqbxO8/z4MEDoqKiuHLlCkFBQbRu3ZpHjx+zbOYX+goSjBs3jtmzZ7Nx40YuXbrE+PHjCQ8PZ9SoUQV6jL6+vvz8889cuHCB0NBQ+vTpg42NTYHO+V9xcXG89tprJCYm8tNPPxEXF2d4Ll80LkvQM3kilJCQQHh4uKH7KiIigvDwcEMf6pgxY1i5ciVr167lwoULDBkyhMTERAYMGGDCqAVT+aClD2Nfq264/cWWs/zf6UgTRiQIerNmzUKSJEaPHm3qUEqEtWvXkpSUxMyZM/H09DT8vP3224Y6rq6uHD16lICAAAYPHkzVqlXp2bMnVatWJSwsjCpVqrzwOjVq1MDLy4vGjRsza9Ys2rVrx7mww9Surj9WAkaOHMmYMWP49NNPqVevHjt37mTbtm34+voW6DH+9NNPPHnyhEaNGvHBBx8wcuRI3NzcCnTO/zp58iShoaGcPXuWatWqZXoub9++bdRrlVaSXBgj0fIgJCSEgICALOX9+vUzjL5fvHgx3377LVFRUTRo0IBFixbRvHnzIokvLi4OJycnw3REwfRkWWbmjov8sF+/mJpSIbGoV0M61/c0cWRCXpSmv62wsDB69uyJo6MjAQEBLFiwIFfH5fQcpKSkEBERQeXKlUVXh7ElRUPMTc7oKmOpVFDLs2S//oyhNL7ecvseY/IxQm3btn3hrIDhw4czfPjwIopIKO4kSWJCp5rEJacRFHYbrU5mZNApNDod3RqUN3V4gplJSEigT58+rFy5km+++cbU4Qi5IT8deCzmngom7xoThPyQJInpb9WjZxP9bBatTuaTjeFsOVW066sIwrBhw+jcuTPt2rV7YV2xYGsxIevQiRRISGfyFiFByC+lQmLW2/VRKhT8euwWOhnG/HaaNI1Mz6Zi7Seh8AUFBXHy5EnCwsJyVV8s2FpMyDJa0hdlFfmQ2RMtQkKJplBITH+zLh+08AZAluGzP87ww/5rJo5MKO1u377NqFGj2LBhQ67HVEyYMIHY2FjDjxjMahqJGrig039ZkkQmZPZEi5BQ4ikUEl91q4OlUsGqQxEAzPj7Io8S1IzvWFOsQC0UihMnTvDgwQMaNWpkKNNqtezfv5/FixeTmpqKUpl5KxixYGvxkJY+REgpSVgqxfuDuROJkFAqSJLEl11q4WxryXf/XAbgh/3XeZSQyuzu9bFUisZPwbheffVVzp49m6lswIAB1KxZk88//zxLEpRfJp7YWyplPKeSyIEMzPl1JhIhodSQJImRr/pS1l7FpK1n0cmw+eRdniSqWdKnEbZW4uUuGI+DgwN169bNVGZnZ4erq2uW8vzI2CIhKSnJ6IvwmT3Dh75k2MLC3CUlJQGY5dYc4pNBKHXea14JFztLRgaFo9boCL70kPd/DOWnfk0pY2dl6vAEIVeUSiXOzs6GTTxtbW3Fh7aRpKalIWuUyAoFOklBSopxWu9KIlmWSUpK4sGDBzg7OxutJbMkEYmQUCp1rOvJ2gFWfLTuOPGpGk7eiqHHiiOsHdiM8s7i27VQOEJCQox6voz9tZ7d0VwouMT4GJ5oVCgVElZKCXWMGLfl7Oxstnt4ikRIKLVaVnUlaHAL+q8O42F8KlcfJPD20kOsHdiMmh5iJVmh+JMkCU9PT9zc3EhLSzN1OKXG//28gAUP/Chnb011Dwe+6lbT1CGZlKWlpVm2BGUQiZBQqtXxcmLzkFb0XXWMiEeJ3I9LpcfyI/zYtwnNq7iaOjxByBWlUmnWH1TGlpIQQ1R8GrLCCs80qdRsKSHkj5hKI5R6FV1s+f3jlvhVcAIgPkXDB6uOsfNclIkjEwTBFLQ6LQpkJAmxvIYgEiHBPLjaq/glsAVtqpcDQK3RMXTDCdYfvWniyARBKGoajT4RAv1aQoJ5E4mQYDbsVBb81K8JbzfUb8yqk2HS1nN8989ls15DQxDMjU6nRUJGQkI0CAkiERLMiqVSwdwefgxuU8VQtmjPFaZu+1ckQ4JgJrRafSKE6BoTEImQYIYUCokJr9diUudahrK1R27y5Z/n0OlEMiQIpZ1Oq9X/IoNCdI2ZPZEICWZr0MtVmNfDz9A0vv7oLSZuPSuSIUEo5bQ6naFFSIwREkQiJJi17o0rMP/dBoZk6Ndjt5m49azoJhOEUkyr0xl+F11jgkiEBLPXrUF5FvZqiDL9DfHXY7eZvfOSiaMSBKFQ6LSZWn1FHiSIREgQgK5+Xix4t4FhN+rl+67xw/5rpg1KEATj06SgTf/ok2UMX4AE85WvROj69evGjkMQTK6rnxdfd3u6a/iMvy+y6fhtE0YkCILRpT2TCCGLwdJC/hKhatWqERAQwPr160lJSTF2TIJgMu+38GZM++qG2xM2n+VYRLQJIxIEwaieaRECMWtMyGcidPLkSerXr8+YMWPw8PBg8ODBHDt2zNixCYJJjHilGv1aegOg0ckMWX+CO0+STByVIAhGkZ4IyWR0jZk6IMHU8vUSaNCgAQsXLiQyMpJVq1Zx7949XnrpJerWrct3333Hw4cPjR2nIBQZSZL4skttXvYtC8DjRDWB606QpNaYODJBEAosLRmdfqcxQLQICQUcLG1hYcHbb7/Npk2bmD17NlevXmXs2LFUrFiRvn37cu/ePWPFKQhFykKp4PveDfFxtQXgwr04JmwW0+oFocQztAhJyLKYPi8UMBE6fvw4Q4cOxdPTk++++46xY8dy7do1/vnnHyIjI+nWrZux4hSEIudsa8WP/Zpgr7IA4M/wSDafvGviqISCSEtL4/bt21y6dInoaDH2yyw90zWmk2UxfV7IXyL03XffUa9ePVq1akVkZCTr1q3j5s2bfPPNN1SuXJmXX36ZNWvWcPLkSWPHKwhFqpqbAzPerme4PfnPc0Q8SjRhREJexcfHs2zZMvz9/XF0dMTHx4datWpRrlw5vL29CQwMJCwszNRhCkUlLSVT15hYWVrIVyK0bNky3nvvPW7evMnWrVvp0qULCkXmU7m5ufHTTz8ZJUhBMKU3/Lzo0bgCAIlqLSN/PYVao3vBUUJx8N133+Hj48Pq1atp164dW7duJTw8nMuXL3PkyBGmTJmCRqPhtddeo2PHjly5csXUIQuFTZOMFgU6JH2LkGgSMnsW+Tnon3/+oVKlSlmSH1mWuX37NpUqVcLKyop+/foZJUhBMLWpb9ThxM0nXH+UyNm7sazYd40Rr/qaOizhBcLCwti/fz916tTJ9v5mzZoxcOBAli9fzurVqzlw4AC+vuL/tVTTpKKTFcgo0IlNVwXy2SJUtWpVHj16lKU8OjqaypUrFzgoQShu7FQWmbbh+H7vVa49TDBxVMKL/Prrr89Ngp6lUqn4+OOPGThwYBFEJZhUWjKa9BYhWZbFytJC/hKh582cSUhIwNraukABCUJxVa+CE4Ne0if6aq2OCZvFTvWCUBBpajXfDxpE20VN8VtVnwar6tNuuR+h4dsL76KaFLSSBSChk0E0CAl56hobM2YMoF9nZfLkydja2hru02q1hIaG0qBBA6MGKAjFyeh21fn73D1uRydzLCKajcdv07tZJVOHJWQjOTmZ6Ohoypcvn6n833//zVUrkVD4Vg4Zwi+NT5Jgq8El2QqtrOC+bQoTj41nd93XwMLK+BdNS0aT/tEny7IYLC3krUXo1KlTnDp1ClmWOXv2rOH2qVOnuHjxIn5+fqxZs6aQQhUE07OxUjLjraezyL7ddYm4lDQTRiRk5/fff8fX15fOnTtTv359QkNDDfd98MEHJoxMyHDvxjXOO9wmwU7Dy2pH9g05wbjaC6j4wJn7Kok128YXzoU1qWgkfSKkE5uuCuSxRSg4OBiAAQMGsHDhQhwdHQslKEEozl72LUeX+p5sP3OP6EQ1S4OvMb5TTVOHJTzjm2++4cSJE7i7u3PixAn69evHF198wXvvvScWxSwm/m/OPK75PAEZJr++DIBubVtz8vcm3Hbfza+P/0f/wriwJhkt1igk0OpkJNEiZPbyNUZo9erVIgkSzNrnHWtilb5J0apDEWIvsmImLS0Nd3d3ABo3bsz+/ftZsWIFX331lfjgKyZSY1J4UCaNMjotHuWftrJKzhVQpSqItJLYd+JP4184LQWNpEQh6afPK8XLwezlukXo7bffZs2aNTg6OvL222/nWHfz5s0FDkwQirOKLrYMaO3Div3XUWt0zN11iQW9Gpo6LCGdm5sbZ86coX79+gC4uLjwzz//0K9fP86cOWPi6ASABEUcakstTZOlTCOWyzWoRcWLjlytEMPB87/j39jIOxRokkmRrdDJMjqtmDUm5KFFyMnJyfBNytHREScnp+f+CII5GBpQjTK2lgBsDY/kYlSciSMSMvz888+4ubllKrOysuLXX39l3759JopKyHBizy4uVIoCCfydmme6r3bVSnjG6ge430+5Y/yLa1J5Itujk6G6uwN1yovPLHOX6xah1atXG34XA6Izi02NZe+tvbxZ7U3R7G5GnGwsGRZQjW/+ugDA4r1XWfxeIxNHJQBUqFAh0+2oqCg8PDwAaN26tSlCEp5xISSYKJdUkKFHjxWZ7mtey5f9cRVB+pe7ciHsB5eWjAYlAJuHtsLWKl/rCgulSL7GCH3zzTdEREQYO5YSa9axWUw+PJmP/vmIyIRIU4cjFKE+zb0pa6+f4vvX2XtcfSAWWSyOXnvtNVOHIDwj4V40iTYarGUdFpaWme6ztVZhn+aEpINHSo3xL56+6SqIVaUFvXwlQps2baJatWq0atWKpUuXZrvKtLm4FH2J7df1i38dvXeUt/58i98u/SZmppgJGyslg16uAoAsw9LgqyaOSMiO+HssXjTJWlJUOhy12f+/aKyUWGol4hQSss7I+/qlJYtESMgkX4nQ6dOnOXPmDG3btmXu3Ll4eXnRuXNnfvnlF5KSzGv2TA2XGixvtxx3W/0MlSRNEl8f/ZrA/wVyJ74Q+reFYuf9Ft44p48V+vN0JLejzetvoCQQXdbFi1arJU2pw0Wb/f9Lsr01VmolGoVEnLHfRzWp6NJ3nhfjpAXIZyIEUKdOHWbMmMH169cJDg7Gx8eH0aNHG/rhzUnr8q3Z0m0L3X27G8pCo0J5e9vbBF0MQieLncpLM3uVBQNb67fe0Opk1h25YdqABKGYUytSkCVw12U/PifF2RFVmj5LiYm9a9yLa5LRyfqPPjFjTIACJELPsrOzw8bGBisrK9LSzHOVXQdLe6a2msqKdivwsNMng8maZKaHTmfQ/wZxO/62iSMUClOf5pWwstD/OW0Mu02SuhDGNghCKZCmVvPI/glIUEGyz7aOhYMV1mn6sXdRT4w87jItBW16i5BoKRSgAIlQREQE06dPp06dOjRp0oRTp04xbdo0oqKijBlfyXD3JPz0Gjy+RqvyrdjyxhZ6VO9huDssKozu27rzy4VfROtQKeVqr+INPy8A4lI0bDll5G+xQoEolUpThyCku3b2FAm2agDcLLOfum5jb421WgXA4zgjf6ZoUtAZpw1AKCXy9Wpo0aIF1apV4/fff2fAgAHcvHmTPXv28OGHH5rfOkIpcfD7QLhzDFa0gTObsLeyZ3LLyfzQ/ge87PQfjsmaZGYem8mHuz4UM8tKqf6tfAy/rz18QwzQLUZOnTpl6hCEdJcPHyTRWt9iWj59bOV/OTvZYZeq39T7SbyRJ+NoUgxjhAQB8pkIvfrqq4ZNV8eOHZtld2ezkvgQFOnfNtUJsHkQ/DkM1Im09GrJ5m6b6Vm9p6H68fvHeXf7uxyOPGyigIXCUre8E028ywBw+X4CR68XwhooglDCRd+6S5JKC4BPGe9s65RzdcImVd9t9iTJyIlQWjJaWSRCwlP5SoSmT59O7dq1jR1LyeRaFT7aB37vPS07tR5+CID7/2JnaceXLb/kx9d+NLQOxaTGMGT3EH48+6NoNShlPmj59I399xNi1mBpt2zZMurXr4+joyOOjo60bNmSHTt2mDqsYi0lJpFkay3IMlXLVcu2TgW3sthp9PtZPk66b9wANCnISKJNSDDI9ZKaY8aM4euvv8bOzo4xY8bkWPe7774rcGAlisoe3loGVfxh+xhIS4RHl2DlK9BxJjQeQHPP5vzW9Te+OPgF++/sRyfrWHhyIWcfnuWbl77BwcrB1I9CMIIOdTxwsLYgPkXDjnP3+KpbHexUYuXa4io2NpbTp08THh7OyJEj83x8hQoVmDVrFr6+vsiyzNq1a+nWrRunTp2iTp06hRBxyadMU5NqBRJgYe+abR3f8h5YavVdY/FpRty6RpZF15iQRa7foU+dOmWYESb625/DrxeUbwybBsD9s6BJge2fwPV90HUhTjbOfP/K96w4s4Jl4cuQkdl7ey/v/fUe89vOp1qZ7L8dCSWHtaWSrn5e/BJ6iyS1lr/P3qNHk4qmDsvsXLt2jUmTJqFSqViwYAHOzs5EREQQHh5uSHxOnz7NrVu3kGUZOzu7fCVCXbt2zXR7+vTpLFu2jKNHj4pE6Hl0OtSWOv0mFz4vZ1ulnLMTFrINAAkaI67WrknVhyBLiAljQoZcJ0LBwcHZ/i78R1lfGLQb/vkSjv2gLzu/FSJPwjurUVRowhC/IdRxrcP4A+OJV8dzI+4G7/39Hl+1+oqOlTuaNHyh4N5pXIFfQm8B+u4xkQgVvT59+tCnTx+8vb2pW7cuCQkJxMXF4eTkRO3atalbty63b9/mp59+4tVXX6VixYL/H2m1WjZt2kRiYiItW7Y0wqMonTQ6iTRLHRaypG9Nfw4l+unzydpkI15cfy7RNSY8K19jhAYOHEh8fHyW8sTERAYOHFjgoEo8S2t4/Vt4dz1Yp8+ii7kFqzrAoYWg09GmQhs2dtlIjTI1AP2ssnH7xzEnbA4anViDpiRrWNGZKuXsAAiNiBYrTZvAgwcPqFu3Ln5+fkRFRTFs2DBu377NkydPOHToECtWrECSJJo1a1bgJOjs2bPY29ujUqn4+OOP2bJly3PHUKamphIXF5fpx9xodDrUFjosdTmnIkr0q7UnYcT3w7QUAGTEGkLCU/lKhNauXUtyctYsPTk5mXXr1hU4qFKjVlf4+CBUbK6/rdPAP5Phlx6Q8JCKDhX5+fWf6VrlafP6z+d/ZnTwaJLSxIdnSSVJEt0bPd39/K+z90wYjXlatGgRQ4YMoU+fPixfvpxt27YxbNgwLl++bPRr1ahRg/DwcEJDQxkyZAj9+vXj/Pnz2dadOXMmTk5Ohh9jtESVNAdq3CLFSoNKflGHhP7+ZIUR117TZCRComtMeCpPiVBcXByxsbHIskx8fHymbzVPnjzh77//xs3NrbBiLZmcK0H/v+ClMZDRGHt1Nyx/Ca7vw8bChukvTWdi84lYKPR/+Pvu7OPDXR/yOPmx6eIWCqRLfU/D7ztEIlTkunTpwsWLFzl48CCDBg0iPDycdu3a0aZNG4YNG8aDBw+Mdi0rKyuqVatG48aNmTlzJn5+fixcuDDbuhMmTCA2Ntbwc/u2+a04H2Ov/5L3id/UnCtK+vdDtTETFs3TFiFByJCnRMjZ2RkXFxckSaJ69eqUKVPG8FO2bFkGDhzIsGHDCivWkktpCe2mwAebwS49UUyIgnXdYO83SDotvWr2Ynm75dhb6vvMzz0+xwc7PuBW3C0TBi7kl7erHXW89NN/T9+J5c4T0cJnSkqlkuHDh3P+/HmUSiU1a9ZEp9Oh1WqNfi2dTkdqamq296lUKsNU+4wfc5IYH0+aUotCB280fSPHuhoLa/2/xgwg7ekYIbHzvJAhT4lQcHAwe/bsQZZlfv/9d/bu3Wv4OXjwILdu3WLixImFFWvJV/UVfVdZlYD0Ahn2fwtru0LsXZp7NmdNxzW42eqTpdvxt3n/7/c58/CM6WIW8u31ek9bhXaeM8OtZ4ohFxcXFi1axMGDB2nXrh2vvvoqc+fOzbarPzcmTJjA/v37uXHjBmfPnmXChAmEhITQp08fI0deOlw5cRStUs7VB4/WMj0RKqQWIZEHCRnylAj5+/vTtm1bIiIiePPNN/H39zf8tGzZEi8vr8KKs/RwcIf3N8OrU0BKX5H61mFY3hou7aCGSw02vL6Bas76qfRPUp/w4a4PCbkdYrKQhfzpVNfD8PvfonusWKlduza7du1i1apV/Pjjj1SpUiVf53nw4AF9+/alRo0avPrqq4SFhbFr1y7at29v5IhLhzsXzqNVyChz0TclWylBBm0hJEKAmDUmGORrsPTevXv5/fffs5Rv2rSJtWvXFjioUk+hgJfHwIAd4JQ+WDL5CfzaC3aMx0NVhrWd1tLUoykAKdoURgWPYtPlTSYMWsirKuXsqemhXyjz5K0YomJTXnCEYGy3buXctdylSxfOnj3LZ599BsDdu3nbLPenn37ixo0bpKam8uDBA3bv3i2SoBzERN7LdSIkWSqQZCO3CKU9/RsUXWNChnwlQjNnzqRs2bJZyt3c3JgxY0aBgzI2Hx8f6tevT4MGDQgICHjxAUWlUnMYvB9qdnlaFroMfmqPY/xDlrdbTiefTgDoZB1fHfmKn8//bKJghfx4rc7TVqF9l403QFfInaZNmzJ48GDCwsKeWycpKQk7Ozvq1q3LH3/8UYTRmZ+UJwloFTKWuRiurLBSotBJRm4RetoFKqbPCxnytfb/rVu3qFy5cpZyb2/vF34DM5XDhw9jb//8xbtMxtZFv95Q2I+w6wvQquHeaVjRBqsuC5jVZhbudu6s+XcNAHPC5pCqTWVQvUGmjVvIlYAa5Vi05woAwRcf8m7TSiaOyLycP3+e6dOn0759e6ytrWncuDFeXl5YW1vz5MkTzp8/z7///kujRo2YM2cOr7/+uqlDLtU0yWp0CrDMxR6LFlYKlLICncJ4A9ofx6eyOq0HIKEQeZCQLl8tQm5ubpw5k3UA7+nTp3F1zX7vGCEHkgTNAmHQHnBN32YjfSd7xbYRjKk3mKF+Qw3VF55cyNLwpWLD1hKgfgVnXOz0K+QevPoItcaIa6IIL+Tq6sp3333HvXv3WLx4Mb6+vjx69IgrV/TJaZ8+fThx4gRHjhwRSVAR0Kp1yAqwzMUIHSsbSxQ6BS9YdzFP9t3VsVj7lv78Fvn6+BNKoXy9Enr37s3IkSMJDg5Gq9Wi1WrZu3cvo0aNolevXnk61/79++natSteXl5IksTWrVuz1FmyZAk+Pj5YW1vTvHlzjh07lqdrSJKEv78/TZs2ZcOGDXk6tkh51tfvZF//mefw1Hqkla8wxLMNoxqNMhQvO72MhScXimSomFMqJPyrlwMgIVXD8ZvRJo7IPNnY2PDOO++wYMECtmzZws6dO1m/fj2ffvopdevWNXV4ZkPWyugkGUv5xdmNtY0VCp3SqImQJn2/TAAbS6XxTiyUaPlKhL7++muaN2/Oq6++io2NDTY2Nrz22mu88soreR4jlJiYiJ+fH0uWLMn2/o0bNzJmzBimTJnCyZMn8fPzo0OHDpkWRGvQoAF169bN8hMZGQnAwYMHOXHiBNu2bWPGjBnZtmZlMPkS+Cp7eHsFvLkcLPXbNGTsZD8oBT5rMs5Q9adzPzEnbI5Ihoq5tjXKGX4PufTQhJEIgmnpZB2yBJbyiz96rK2tUMoKoy5+qNGkIaFvlVWKvjEhXb4SISsrKzZu3MjFixfZsGEDmzdv5tq1a6xatQorK6s8natTp0588803vPXWW9ne/9133xEYGMiAAQOoXbs2y5cvx9bWllWrVhnqhIeHc+7cuSw/GdP5y5cvD4Cnpyevv/46J0+efG48xWYJ/Aa9YfA+cK+nv61Jgb8+5YMzO/my4SeGausvrGd22GyRDBVjbXzLGdYsCb4oBkybwp49e2jRogXW1tY4ODjQtGlTZs+ene2eiULh0claZEnGMhcfPTbWKpQ6JUigVme/QGVeaTVpWIhESPiPAnWSZszG6tixI97e3saKyUCtVnPixAnatWtnKFMoFLRr144jR47k6hyJiYmGN7uEhAT27t1LnTp1nlu/WC2Bn7GTfdPAp2WX/qLn/2bzle97hv2TN1zYwIKTC0QyVEyVsbPCr4IzAFceJHA/TkyjL0qhoaF06tQJlUrFpEmT+PLLL6lfvz5z586lbt26ObYQC8Ylo0EGrHhxt5SdtTVKnX4+T1KqcRJWrSYNZXobk5g+L2TI16yxpKQkRowYYVgz6PLly1SpUoURI0ZQvnx5xo8fb5TgHj16hFarxd3dPVO5u7s7Fy9ezNU57t+/b2ht0mq1BAYG0rRp0+fWV6lUqFSq/AdtbJbW0HmuflXqP4dBcjQkRPHW/2ahaPAmk2L1rVurzq3CWmnNkAZDTBywkJ3W1VwJvx0DwNHrj+nWoLxpAzIjc+bMoVu3bmzalHkdrqSkJAYPHkznzp05e/Yszs7OpgnQjOhkfcuO1Qs3XAU7OxtDIpSQnICzQ9YlW/JKo9GgkHQgixYh4al8tQhNmDCB06dPExISgrW1taG8Xbt2bNy40WjBGUOVKlU4ffo0p0+f5ty5c4waNerFBxVHNV+HoUee2Z4DuoVv5cs0W8PtpaeXsurcquyOFkysZZWnb+JHronNdIvSkSNHGD58eJZyW1tb1q5dS4UKFVi+fLkJIjMv8U+i0ZAMElhJLx5C4WBjjTI9YUpKijVKDFqtxtAiZCESISFdvhKhrVu3snjxYl566aVMi1LVqVOHa9euGS24smXLolQquX//fqby+/fv4+Hh8ZyjSjEHD/32HK9NB4UlAD3vXOSzmARDlfkn5rPhQjGeGWemGnuXwVKp/1s5LBKhIvXw4cNs1z0DfVf7qFGj+Ouvv4o4KvNz8fhR1Fb68TmqXCRCTvZ2KGR9F1rio7yt+P08Go0WpaRPhESLkJAhX4nQw4cPcXNzy1KemJho1NU6raysaNy4MXv27DGU6XQ69uzZQ8uWLY12nRJFoYBWwyFwD5StDsAHT6IZFR1jqDLr2Cy2XNliogCF7NhYKWlYqQwAt6KTuBuTv00+hbzTarWZWq7/q3Hjxly6dKkIIzJP9y5eIMZeP33dRmH7gtpQxsEORcYYoceRRolBq9WIREjIIl+JUJMmTTJ9g8pIfn788cc8JygJCQmEh4cTHh4OQEREBOHh4YYVqseMGcPKlStZu3YtFy5cYMiQISQmJjJgwID8hF56ePrp1xxqrH8eBsXGMfjJ0+bjqUemsvfWXlNFJ2SjZZWni42K7rGitW7dOkJDQ0lJyTpQ3dHRkZiYmKIPysxsUv/B/1roZ006qJxfWL+Mgx2K9GGsCTH3X1A7dzRarWFFaZEICRnyNVh6xowZdOrUifPnz6PRaFi4cCHnz5/n8OHD7Nu3L0/nOn78eKb9v8aMGQNAv379WLNmDe+++y4PHz5k8uTJREVF0aBBA3bu3JllALVZsrKFrgugWjvYNpxhMU9IVEisd3JEJ+sYt28cK9qvoIlHE1NHKgCtqrqyMH27jSPXHvNO4womjsg8vPzyy3z99dfEx8djYWFBjRo1aNy4MY0aNaJx48a4u7uj1RpvGwche49VaSBDh+QKjO67+IX1HZ6ZNZYc/8QoMWi12mfGCImVpQW9fCVCL730EuHh4cyaNYt69erxv//9j0aNGnHkyBHq1auXp3O1bdv2hdO+hw8fnu1gRyFdrS5QvhHSlsGMi9hPjFLJdns71Do1I/YMZXWnddR0qWnqKM1eg0rOWCkVqLU6TogVpotMxpezK1eucOLECU6ePMnJkyfZtm0bMTExYvPNIqKWZBQ6mPnhn1jmYr05pVKJMn3hxZREYw2W1rcISZJoERKeylciBFC1alVWrlxpzFiEgnD0gg/+RHFkMV/t/ZoYhYKDtjYkaJL5+O++/Nz1Nyo6+Zg6SrOmslBSr4ITJ24+4cbjJB4lpFLWvhgt1VDK+fr64uvrm2kboIiICI4fP86pU6dMGJl5UCtkFLKUqyQogyJ9vaHUlESjxKDV6pAk/ZgQkf8KGXLdNvjfbSdy+hFMRKGA1iOxDAxmHm74pejX7HisTWbwljeJjjpt4gCFxt5lDL+fuGmc5n4h/ypXrkyPHj3yvDWQkHdpChmFLm/dUcr0WWMpqcaZXKDRpSdCCkm0CAkGuX5VOjs7U6ZMmRx/MuoIJuZRF9vAYJb4vE01tX6Wxm1Jy8ht75JyfBWIFahN5tlE6KRIhIqFK1eu4O/vb+owSj2tQkaZi81Wn5VRP1VjnNXYtTodEhKSJImVpQWDXHeNBQcHF2YcgrFZqHDqMItll17ivcMTeKiA0ypLJoZ+w7eX/0HxxiKwL/fi8whG1aiSaBEqbtRqNQcPHjR1GKWeVpJRafPYIiTpW4TSNOqCB6DTodHJSEpQSGKLDeGpXCdCCxcuZM2aNTg6OrJu3Trefffd4rUVhZAtjxpdWOzgTv9/BpGMjv/Z21H+4WHGLGkGr38LdbuLzvIiVM5BhY+rLTceJ3HmbiypGi0qixfvuyQIJZ1O0mGpy9uwVCm9RShNNsKsPk0KWpTPtAgV/JRC6ZDr9Hz79u0kJuoHrA0YMIDYWOOM4hcKX22vpsx99XsU6Zu0rnZ25DcLNfzxIWx8H+KNs0aHkDuN0rvH1Bod5+6KMXWF7eOPP2blypUcP34ctdoILQtCvugksMxj15hFRteYMRKhtGQ0sgIkCQVi1pjwVK7T85o1azJhwgQCAgKQZZnffvsNR0fHbOv27dvXaAEKxtGmQhsmNP+C6aHTAZjhWgZPjYaXL26HGweh0xyo31O0DhWBJt4ubD6p3zLg5M0nmcYNCcZ39uxZNmzYQGJiIpaWltSuXduwhlCjRo1QiPVkCl3s40fIkoyVNm/vLxlf3jToCh5EWhJalCCJMUJCZrlOhJYvX86YMWP466+/kCSJSZMmZbv+hiRJIhEqpnrV7MXdhLus+XcNWklirFs51t6LomZKDGz5CP7dAl3mg6OnqUMt1Z5NfI7fjCaQKiaMpvQ7dOgQsixz6dIlwxpCJ0+eZMuWLYYVpcVaQoXrUthhZAnyOphCIQEy3LdTc/lmONW9G+Q/iLRktCiQkZAk8Z1PeCrXiVCrVq04evQooN+o8PLly9nuNyYUb580/oS7CXf55+Y/JCkkhlWoxIabN/DQauHyDlh6GDrOAr/e4p2ikPi62eNgbUF8ioYTN58gy7L4IC5E//77LyqVipo1a1KzZk3ee+89w33Xr1/nxIkTYh2hQnbn3/PgCtZ57BqT0luEjlRKYfKuAQR9VID/p/QWITm9nUl0jQkZ8tUmHBERQblyYsZRSaSQFMx4aQb1y9UH4IGcxrAajUmwT09qU2Jh6xDY0ANijbPjs5CZQiEZZo89SlBzKzrJxBGVbmPGjGHp0qWZyv766y/69OnD999/T9OmTcU6QoXs4e07IIGtIm8TAyQAGWpHWZFCAccJpSWjQYFOTJ8X/iNfiZC3tzcHDx7k/fffp2XLlty9q//A/Pnnn8U01BLA2sKa71/5ngr2+r2uLidHMb5+ANp6PZ9WuvoPLG0BYT+Bzgj980ImTcTCikXm9OnTdO/e3XD7woULvPXWW+zbt4/169fTrFkzIiONs7u5kL34VP2kADsrmzwdJ0mAAlRqCa1UwPXP0luEdOktQiIREjLkKxH6448/6NChAzY2Npw6dYrUVP0KxrGxseKbVQnhYu3CsnbLcLTSD3jfd+8Ii3xqQ++N4JA+Rig1Dv4aA6teg6hzJoy29Mk8TkgkQoUpNjaWihUrGm6vW7eOKlWqcPPmTe7cuYOfnx+zZs0yYYSlXyL6zwhbS7s8HSdlfETpFGgpaCKkbxHSpo8REj1jQoZ8JULffPMNy5cvZ+XKlVhaWhrKW7duzcmTJ40WnFC4fJx8mOs/17Bo2apzq/g/izQYehQavP+04p0wWNEG/jcJ1MbZ88fc+VV0NoxRECtMF64KFSpw7949w+09e/bQo0cPlEolKpWKCRMm8L///c+EEZZ+KUr9Cvd2FtnPNH6ejEYbWZbI44SzrNKS01uE9O93YoyQkCFfidClS5do06ZNlnInJyfDLAyhZGjp1ZLPmn5muD318FTOJNyCN5dAv+3g6qu/Q9bC4e9hSXO4tMNE0ZYedioLank6AHDpfjyxyWkmjqj0ateuHd999x0AN2/e5OTJk7z22muG+6tWrcrt27dNFZ5ZeGKr3yvMw9E7T8cZuq9kCj6BPi1J3yIk64dgiwkKQoZ8JUIeHh5cvXo1S/nBgwepUkVMBS5petfszTvV3wFArVMzKngUUYlRUPllGHIIAiaCMn3ia+xt+LUXBPURg6kLqHH6gGlZhvDbMaYNphSbNGkSwcHBVKlShZYtW1KxYkVeeuklw/3379/H3t7ehBGWfo/s9S3J/vXeytNxkqT/iJJlhRHGCCWjxRKtjH5RRZEHCenylQgFBgYyatQoQkNDkSSJyMhINmzYwKeffsqQIUOMHaNQyCRJ4otmX9DYvTEAj5IfMXLvSJI1yWChAv/PYOgRqNL26UEXt8OSZnBoERhjHyAz1NjHxfD7iRvRJoykdCtfvjxhYWG89dZbdOrUic2bN2dqDdi7dy/Vq1c3YYSl2/3bN4i1SwIZqldpnKdjFRmJkE4q6Jwx/WBpycIw0kh0jQkZ8rbxS7rx48ej0+l49dVXSUpKok2bNqhUKsaNG8egQYOMHaNQBCyVlsxvO5/ef/XmbsJdLkRfYPKhycxpM0f/oeFaFT7YCmd/h10TIPEhqBPgny/h5Fr92kO+7U39MEqUZwdMn7glxgkVJm9vb+bNm5ftfefPn+edd94p4ojMx7FtW0i00aLSkee1yRTKjOn2EhpjjBGSbNDpZFCKWWPCU/lqEZIkiYkTJxIdHc25c+c4evQoDx8+xMnJicqVKxs7RqGIlLEuw/evfI+thS0AO2/sZOXZlU8rSBLU7wHDw6DJQNJX+YDHV2HDO7ChJzy+VvSBl1DlnW3wdLIG4NStGDRasUyBKaxbt45Ro0aZOoxS68HFa6RYaXHU5b1rS5merEhglBYhjWSBTtbHIRIhIUOeEqHU1FQmTJhAkyZNaN26NX///Te1a9fm33//pUaNGixcuJBPPvmksGIVioBvGV9mvTzLsKLr4lOL2X9nf+ZKNmX0W3EM3geVWj4tv7JLP5j6n8mQGl+EUZdcGRuwJqm1XIzK+TmTZZmo2BTuPEnSf6sVhBIgJTYFjYVMuXxM+1Iq0jstZAltQROXtGS0WJDxpyN6xoQMeUqEJk+ezLJly/Dx8SEiIoIePXrw0UcfMX/+fObNm0dERASff/55YcUqFJGASgEMbzgcABmZ8fvHcyvuVtaKnn4wYAd0/wkcvPRlujQ4tBAWNYLjq0CrKcLIS56MAdMAR68/zrZOslrLwt1XaD5jDy1m7uGl2cH4ffU/Pv3tNBfuid3rheLtsUUCsgTe5G3qPIBSqU+EJBmjdI1pJAu06ZmQGCMkZMhTIrRp0ybWrVvH77//zv/+9z+0Wi0ajYbTp0/Tq1cvlMq8LZ8uFF+D6g3i1UqvAhCfFs+o4FEkpWWzFYQkQb139N1lL48FpZW+PPEBbP8ElrXST7eXRQtGdl72LWv4PfjSgyz3345O4q2lh5i/+zIP4lMN5fEpGv44eYfXFx3giy1neZIoBqwLxU9ifDy3XPWvaz+3Znk+3kL5dBirUQZLozR0jYnp80KGPCVCd+7coXFj/aj/unXrolKp+OSTT8QLqhRSSAq+af0NlZ30Y76uxlxl8uHJyM9LaFT28OqXMOwY1HrjafmjS/rp9ms6w90TRRB5yVLNzZ4KZfTbDhyLiCYh9WkLWmRMMr1XHjV0mSkVEi/7lqVdLXccrfUfELIMv4Te4pV5IWwMuyW6zIRi5f8WzuO+SyLI0LlN3sdhWVroF+yVAFmSUKtTcz4gJ+nrCOlkQJZF15hgkKdESKvVYmVlZbhtYWEh1t8oxeyt7FkYsBC79GXxd93YxZp/1+R8kEtlePdnGPg/qPDMN8Cbh2DlK7BpAERHFF7QJYwkSQTU0G94m6aV2XUuCoDY5DT6rjrGnSf6hegql7Vjx6iX+fnD5vzYrwlHv3iVL16viZ2VvhX2SVIan/9xlneWH+aUmIEmFBMRV69wyyMJe50OZ1efPB+fkQhlzHlPLsjK9mp9i1DG6UTXmJAhT9PnZVmmf//+qFT6xfVSUlL4+OOPsbPLvH/M5s2bjRehYFKVnSoz86WZjAweCcCCkwuo4VKDVl6tcj6wUnP48H9w4f9g91SITp9N9u9mfVnj/tBmLDh4FGr8JUG3Bl78fPQmABtCb9LVz4sh609w9UECAD6utgR91AJ3R2vDMbZWFnzUpirdGpRn+l8X2HZav2noyVsxvLX0MI29y9C1vidtqpfDx9UOhXjTL9E06sxdnxpd5rF3Gu1/b2eur/vPxsn/PV6rybyyuVaXuSNKJ2tJU6vRaTWkqdWkqVPQaNLQaDSkpSSTlpaGVp2GrNWg1aSRmBDLwX/3EPLyLXQSDPf4IPcP9hmWVipQG+anok5Lydd59AfHo5HT1yUif11j2bWIP7eVvBAoFPma6F2yPO/5zK7cSM9HnhKhfv36Zbr9/vvvP6emUJoEVArgY7+PWX56OTpZx2f7P2Njl42Uty+f84GSBLXfgBqd4MQaCJkJSY/1A6rDVsKpn6FZILT+BOxci+SxFEeNvctQ08OBi1HxnLwVw8tz9nI/Tt8F4GJnxbqBzTMlQc9yd7RmUe+G9GpakUl/nuP6Q/035hM3nxh2tbdP386jkosdFV1sqFjGlvJlbHC2tcTR2hJ7awuUkoRC0m9Gqd+Q8uk2BApJjKd4npkzZ7J582YuXryIjY0NrVq1Yvbs2dSoUcOo12m2oRFpJS2ZrQnI0Fv5En06jc/XKawNiZD+saekFiQRSkRLxkrVT6fm/5fmyRNiNsxG/e8W3Fzuo1DI+uWPnvP0F9n/Sgn77y90rr4w4rhRTpWnRGj16tVGuahQ8gzxG8L5x+fZf2c/samxjA4ezbpO67CxsHnxwUpLfcJT/139jLKjyyAtETQp+v3Ljq+GFkOh5TCwcS70x1LcSJLEkLZVGRUUDmBIgqwsFKzs25hKrrYvPEeramXZOaoNW07d4aeDEVy+n2C4LyFVQ9iNJ4TdKHiXWUZSpE+S/vM7Uqb77VQWHP3i1QJfszjbt28fw4YNo2nTpmg0Gr744gtee+01zp8/n6WlvCACtBVITMvcLZT1czHnT0rpP/dnuf2fwyU5c0FijBatVgIp85Wk//xLetLgrnSkU8BQ2jTqlGNcObFRWUMCSOmtAWlpyfk+F6kJz7QIZT9GKPn0aZ5M64VX/UhkN9AhES85oVNYoVFY/+dJkrL99TkF2ZJznd1I2JfzxNahzDNF/z32BbelnO57XhxZ/nefc6nnPC/Znu8F58r0AsvhMZVvlMN18iZfK0sL5kchKZj58kx6b+/NrfhbXIy+yFdHvmLGSzNy31pg7agfUN38Yzg4H8J+BG2qfoXq/XPg2A/QeiQ0G6wffG1G3vDz4viNJ4YuMmdbS5b2aURjb5cXHPmUlYWCd5tWomeTily6H8+eCw84dSuG85GxRMYW4Jv0MzIGmj71/G4BnRnMFNy5c2em22vWrMHNzY0TJ05kuzF1fs0btPPFlUohW5X+i1ZG0pZaoK6xBLTpyZ0sk6W7OO3+AxJmd8ez3kN9HZU9yoE7cfKol/9rCiWCSISEXHO0cmRhwELe+/s9kjXJbL++nbpl69KnVp+8nci+HHScAa2Gw/5v4eQ60GkgJQb2fAVHlsLLY6DJh2CZfZdQaSNJEl+/WZdezSoSFZtC08ouOFpb5vtcNT0cqenxdN2W+JQ07jxJ5nZ0ErefJBMVm0xcsoa4lDQSUjXoZBlZ1icvOlk/7kGW9WmOnFEGYPg9/X75acIjp5dnHG9rZX5vL7GxsQC4uGSfwKamppKa+nTmU1ycWAcqJ/a2+tbQjIVZUvPbIqTTgToRDc8kQv/5Avf42y/wqP6QxwoFTgoVFp9eBJVDfkMXShDze6cSCqRamWp80/obPt33KQDfhn1L9TLVaerRNO8nc/TSr1DdehTsmwOnfwVZB0mPYNcXcHgxtPkUGvYFC6sXn68UqOPlRB0vJ6Of18HaklqeltTyzPuidkLu6HQ6Ro8eTevWralbt262dWbOnMm0adOKOLKSy8FG3zKc0SKUpsnn9Pm0JEB+pkVIRvnMONvU69exuLmTlDoWxKhscKnWUSRBZsQMhqALxvaaz2t8WPdDALSylrH7xhKVGJX/E5bxgTeX6tcgqvP20/L4SPjrU1jcGE6tF6tUC8XasGHDOHfuHEFBQc+tM2HCBGJjYw0/t2/fLsIISx5H2/RESMroGstnIpQ+7T5jOz8dmVuEYn7bhF2FNM6oLKiaHI9U2XjdmkLxJxIhIV9GNBxhmEIfnRLNJ8GfoNYWcHXjsr7QYzV8fBBqdH5aHnML/hwGS5rBmU2gK/Aas4JgVMOHD2f79u0EBwdToUKF59ZTqVQ4Ojpm+hGez9ZGP+Dc0CKU364xdYK+G5enLUIZyZWs1RK/cyvWjqk0zJiVVvWVggUulCgiERLyRalQMqfNHMMU+nOPzzEnbI5xTu5RD3r/AoF7oVq7p+XR12DzIP22Hef/1Pf7C4IJybLM8OHD2bJlC3v37qVy5cqmDqlUUaWPEXzaNZbPL1vqBMPUedAP+lemNwglnzmDFVFIkowlQI+14PT8ZFYofUQiJOSbk8qJBQELUCn1C2xuvLSR/7v2f8a7QPnG8P4fMGAneL/0tPzhRfitL/zgD5d2in3MBJMZNmwY69ev55dffsHBwYGoqCiioqJITi7ANG/BwNJS/94iS/qPqjRt/rrGjt2IoWXq94bbsiwbZo0lhOxDVVaF4WuVZ/18xyuUTCIREgqkpktNJjafaLj91ZGvuPzksnEv4t0S+m+Hvn9ChWcGZUedgV/fhR/bwbVgkRAJRW7ZsmXExsbStm1bPD09DT8bN240dWilgio9EZIk/bwxTT5bhC49SOIxTvSsp++K1OmejhFKCgtDVbUciQoJrcICnL2NELlQkohESCiwt3zf4m1f/SDnFG0KY0LGkKBOeMFReSRJUKUtfPgPvLcJPJ751nb3OPz8JqztCvdOG/e6gpAD/TIDWX/69+9v6tBKBav0rjE5PWlR5zMRSlWnYo0a/+r6ff10yCgkCVmtJuXcOXTOOlKRSCvjDQrlC84mlDYiERKMYkKzCdRyqQXAzbibfHnoy8LZg0eSoPprMHg/9PwZytV6et+NA7DCH7YOg7h7xr+2IAhFSmWZvnJ9eotQfrvG1Go1VqTxWK1fMUaWQamAlAsXkNVqtFZJyBJYuVQ1StxCySISIcEorC2smdd2Hg5W+rU3dt/azbrz6wrvghn7mA05BN1/0k/BB0CG8PXwfWP92kQFWZJfEASTslCmJy7piZBWm5ZT9edSq9WoJA1nIvUt1WXtVVQpZ09yeDiWTgostE+wRIHC8QX7JwqlkkiEBKOp6FCRmS/NNNyef2I+x6OMsynecymUUO8d/RpEr30DqvTFCNMSIXg6LG0BV3cXbgyCIBQKhVKJJEtIGYOl8/nFJlWtxkrSkarRD4k+OuEVmvq4oDmzg2qd7lAm6QnWMiASIbMkEiHBqPwr+hNYLxDQL7Y4bv84HiU/KvwLW6ig1QgYeQqafWRoSufJDVjfHTYNgPgCLPooCIJJKHUKwirdACAtJX9jD9XqNFQKHWqNfg0yZfqMMd2d8wBM9K6JtU6jX+1eMDsiERKMbliDYTT3bA7Ao+RHjN03Fo2uiFaFtnOF17+FoUcyT7n/dzMsbgYn1orZZYJQgrS6+ypOKfqFFdOS4vN1jtQ0DVZKmTSN/m9fkiQ0T55A8hNkhRWndOnndfQ0SsxCySISIcHolAols1+ejZutfobGifsnWHRyUdEGUa6Gfsp9t6Vgk74BZmos/N9ICHoPEh4WbTyCIOSLU2I9yiWUAUCd3xYhjRYrBai1TxdhTb1yBaWVDq2VA+U06WOPHESLkDkSiZBQKFxtXJnnPw8LST/YcfW/q9l9s4jH6kgSNOwDw49Dgz5Pyy/9rR87dPHvoo1HEIQ8k5UyCv2az2jUKfk6h1qjRaWU0GgzNtmA1KtXUaok1NZ2OGYkSLauRohYKGlEIiQUmgZuDRjbdKzh9qRDk7gRe6PoA7Fz1W/q2jsI7Mrpy5IeQVBv2DEe8jkTRRCEwicrZCT0X6g0+dx0NVUjY2WhIE2rIyMTSr1yBUsXW5ItVdhmdJdb2RkjZKGEEYmQUKjeq/kenXw6AZCYlsiYfWNI1phoSnuNTjDkCNR4/WlZ6DJY+wbE3zdNTIIg5EhWgIQlyPlfWVqt1aGyUJCmkw0tQuorV7FwVBGnUOJuYQ9IkLFukWBWRCIkFCpJkpjaaipVnKoAcOXJFb4+8nXhLLaYG/bloNcv0Pk7UFrpy24d1u9bdvuYaWISBOH5lDxtEcrnpItUrYTKUkmaVockSciyTOqVK1jYKoiRZNwt7PStQZL04pMJpY5IhIRCZ2tpy/y287Gx0H/b+r/r/8emy5tMF5AkQdMPYcCOp4Mj4+/Bmi5wwYibxgqCUHAKQNaPETrq8ojp6/vn7XhZRq0DK0sL0rQykgTaR4/QxsaisNTxRJJxUVqLbjEzJhIhoUhUca7CV62+MtyedWwW5x6dM2FEQIUmMHjf02n22lT9rvZhP5o2LkEQDCSlhAJLrNIk0iQ4knwibydISyZVtkBlaYVGq0OBROqVKwAoSOWxnIaTZCESITMmEiGhyHSs3JH3a70PQJoujTEhY4hJiTFtUPZu8MEWqP+u/rasg78+hb3TxXpDglAMSBYSkk6JlVZB7Uc2pEl5/LtMfkIqllhZWaHR6VuE0i4codIr0ZD8iPs6NY4oRSJkxkQiJBSpMY3H0KBcAwDuJd5j4qGJ6GRdzgcVNgsreHM5tB71tGz/HNj7tUiGBMHEFEoJSbYAZBQa8pEIRaPGEpW1tb5FSJLg5hHs3FKQ6/dkpwrskcDKvlDiF4o/kQgJRcpSaclc/7mUUekXSNt/Zz9r/l1j2qAAFApo/xV0nPW07MA82DfbdDEJgoBCqUCSlSDJKDUS6ryOZ056TKpsiZXKFo1ORiGB9uFdZFlJdMdvuGmhxE6WRYuQGROJkFDk3O3cmfnyTKT0iayLTi7i5P2TJo4qXYsh8Prcp7dDZuoTIkEQTEJpaYEkWyBLIGn044TyJCkaNRaobJ4mQvKTKGSlrWEfRGudDixtjR+8UCKIREgwidblWzOo3iAgfXPWfeOITok2cVTpmgVCh5lPb+/5CsJ/MV08gmDGLCwUhkRIoZVQp09/z7X0rjErlQ1anUy55BgkUpFVjoZESKVNE11jZkwkQoLJDG0wlKYeTQF4kPyALw58YfrxQhlaDoV2U5/e3jYSIvabLBxBMFcWVhZIKJAlGbQSGkkiMSUp9ydIiiYVK6wslGh1MpXiolBaykj2LoZEyEKTKrrGzJhIhASTsVBYMPvl2bha6/f3ORR5iB/PFqOp661HQ1N9qxW6NAh6Hx5eMmlIgmBuLC2UKGQpvWtM/5EVl/gk18fLieldY5YKNDqZSrFRKGwkJIdyPEp+hJPKCYU6SSRCZkwkQoJJlbMtx6w2swzjhZaEL+HYvWKywrMkQcfZ4Pua/nZqLPzaG1LiTBuXIJgRSysLJFmBTgK0+o+shKTc/w1qEqPRocBKqUCrk6kYew9LR2ska0ceJz+mpsIOUuNF15gZK/WJ0KVLl2jQoIHhx8bGhq1bt5o6LOEZLTxbMKTBEAB0so7PD3xuaLI2OaUFvLMa3Ovpb0dfg20jxLR6QSgiKisrfdcYgKwEIDE5NtfHq5P0dVUW+kSoQuw9lLZKsHb6//buPTyK6n78+Htmr7mTEEiIgCAqikHCNVBvqEhEy7dY22p/VikoWgtVG0oFFbAVpV6/eKFSUcTWrxX1KWjRIkoRRJBLMNxFlKtAEiAkm9veZub3xyQLMReSkGSS3c/reeZhd+bMzmeG7O5nzzlzDnFHt/Hqzi/NSZijk1ogetEehH0i1Lt3b3Jzc8nNzWXNmjXExMRw3XXXWR2W+IG7+97N0C5DAThecZypq6ei6ZrFUVVyxcItfwdXgvl85xLYMN/SkISIFC6XHaWyaQy9MhFqRK1sWUkRAE67imLodCnKw+Y0wJ2AUVo52fLti6H/7c0cuWgvwj4ROt0HH3zAtddeS0yMtAW3NTbVxl+u+AudojoBsD5vPX/b+jeLozpN0nkwZu6p5x8/BEe3WBePEBHCrBFS0BWwa2YTenlFWYP3LyoxO1bHuOyklhfi0gIoih/c8Xh9lTVL3YeZA6uKiGR5IrR69WpGjx5NWloaiqLU2mw1d+5cevTogdvtJjMzkw0bmtaH5J133uGWW245y4hFS+kY1ZGnrnwKVTH/LOdtmcfaI2stjuo0F4+GYZPMx3oAFt8LQZ+1MQkR5qLdrlAfIZtemQj5Gtg0pgU4WREAIMZpJ6NsD6mDilCCpeDugM9XYpazuVoidNFOWJ4IlZWV0a9fP+bOnVvr9kWLFpGdnc3MmTPZvHkz/fr1Iysri4KCglCZjIwM0tPTayxHjhwJlfF4PKxdu5Ybbrihxc9JNN2g1EH8rv/vADAwmPb5NArKC86wVyu6duap/kIFO2TkaSFaWLTLiWqYX1Vq5egaXl8Da4RKCzhpmJ2go502riOHxPPLoftQAl0Howcr0BWbObK8iFh2qwMYNWoUo0aNqnP7c889x4QJExg3bhwA8+bN48MPP2TBggVMnToVgNzc3DMe5/3332fkyJG43e56y/l8Pny+U7/yPR65Q6i1jU8fT05+DmsOr6HQW8gfV/+RV0e+il21/M/VrD6/6WV45WqzVmjN/0LvG6HrQKsjEyIsRbtdKFQlQmaNkDfQwHGESvI4acSiAA6bSrdgAf6AHee4jyiuOI7TMNBtDutrBISl2vT/v9/vJycnhxEjRoTWqarKiBEjWLduXaNeq6HNYrNnzyYhISG0dOvWrdFxi7OjKipPXP4EKdEpAOTk5zA3t/YaQ0uk9oWrHjQfGzr8+z7QgtbGJESYio12oxhmAmSrrBHyNTQRKs3jJLF0iLIT1A1S9ULKDHMqDY/Pg9MwwCZ9gyJdm06Ejh8/jqZppKSkVFufkpJCXl5eg1+nuLiYDRs2kJWVdcay06ZNo7i4OLQcOnSo0XGLs5foTuSZq57Brpi1QK9ue5XPv//c4qhOc/kDkHqp+Th/O2xsQwNBChFGYt1RoXHGXEHzTlJfoIFNY54jnCSBxBgXvuPHiVMrKFHNuz+L/cU4DKSTtGjbiVBzSUhIID8/H6fzzH/wLpeL+Pj4aouwRkbnDO4fcH/o+UNrHiKvrOEJcIuyOeDG5049X/k4lORbF48QYSo+2o1S2UcoSjOrhHxBb8N2Prmfk45UEmOcBHd/jc2lU+Q0R7Iv9hXjNAwUe/3dJUT4a9OJUHJyMjabjfz86l8w+fn5pKamWhSVaE1jLxnL8K7DASjyFfHg6gcJ6m2kGarb4FNjj/g88MkMa+MRIgzFRUeHEiE3BooBAa2iQfvuzzvOexUDSIx2YHyzG8UNJ13mEB1ViZAqiVDEa9OJkNPpZODAgaxYsSK0Ttd1VqxYwbBhwyyMTLQWRVGYdfksusR0AWBzwea2Nb7QiEfB3cF8vPVtOJJrYTBChB+304FijiuN02HDrkNFoGE1Qh8eiQPghr5dUPZ8je5WKbdXNo35iolSbFIjJKxPhEpLS0MjPwPs27eP3NxcDh48CEB2djbz58/njTfeYNeuXdx7772UlZWF7iIT4S/BlcBTVz6FTTFHlX1l6ytszNtocVSVYpJh+LRTzz991LJQhAhfZiLkctnBUPgPufi8ZxhLyDD4vlwlPcHHTf3PwbFzG3aXFkqEinxFxKoO6SwtrE+ENm3aRP/+/enfvz9gJj79+/dnxgyzmeGWW27hmWeeYcaMGWRkZJCbm8uyZctqdKAW4S2jcwYTMyYC5nxkU1dP5aS34TNQt6hB46DDuebjvSvhu/9aG48QYcfsGxTdIZauBW58qsKevcvr38VzhO+1RM5JcBHYtpruF3+L2+anojIR8vg9xCh2sMtgipHO8kRo+PDhGIZRY1m4cGGozKRJkzhw4AA+n4/169eTmZlpXcDCMuPTx5OZav7fF1QUMOOLGRhtYfJTuwuumX7q+aePgq5bFo4QYUcx3+fRKSkM3ml2di4o2l//PnlbOWwk0zUlmeDnC4nr6mWV1o+9MeaP7mJfMdGKTWqEhPWJkBANZVNtPHHFEyS6EgH47PvPeOvrtyyOqlL6zeb4QmDOQfbNMmvjESKsmD8s3N174ParqIbBgRMH693DOLKlMhHqjH5wCxXeOMYHH+RkVHfATITcqFIjJCQREu1L5+jOzLp8Vuj5s5ueZdeJXRZGVElV4epHTj1f/TS0hdoqIcJBZY2Qq9dFqAbEBeBoSf1DaRw98A0+nHSPUVHLDlMc1Q1FAVUxxyQq9hfjVlSpERKSCIn258quV3JHnzsACOgB/rj6j5Q3dKTZlnRh1ql5yI5sNvsLCSGajzuK6GCQaL+N497CustpATYeKAKg93ebcUT7KejcF1VRsFV+6xX7inGhSI2QkERItE8PDHiAPh37ALDfs5/H1z9ucUSAosCVk089X/2MdbEIEVbMGqGgHqCTw8DltVGkldRd/OA61vl7cmGSHeODt3FE6xztcBGKAjbVrBHy+Dy4DKRGSEgiJNonh83B01c+TbTdnDfog+8+YOnepRZHBVz8P5B8ofn4wBew/wtr4xEtavXq1YwePZq0tDQURWHJkiVWhxSezNwFXdfock4qjgonJ426xxIq2vQuH+rD+JnzJNH+zzFQ2RM7BAWzaSyoBykJlOCUREggiZBox7rHd+eRoaf65Ty27jEOlVg8N5xqgytOqxVa95J1sYgWV1ZWRr9+/Zg7tw1NChyGjMrO0kEtQK9RP6FjsYvvnDrLcz+uWfjYbv66RSc6EOTmbY/S8aIy6H09hWoiiqJgUxU8fg8AdkOXpjEhiZBo30b3Gs3/9PofAMqD5Ty85mHrp+BIvxni0szHu/8DhXutjUe0mFGjRjFr1ixuuukmq0MJb5U1QkEtSOp1N3P5PjsdyuzM+/JhCosLANCDGr7v1rB43izKj9pYcmImSeccRbvoFyg/nY+vcsJWVVEo9pmDMTp0TWqEhCRCov17KPMhusZ2BeCrgq9YsH2BtQHZHDBkQuUTA9a/Ymk4ou3w+Xx4PJ5qi2iAym8qTQ8AkHXPbxm2owN73D6u/te1XP5yP7JeHsiYpZP4v7gtxF+4jJhux9AvvAnbz/8Krlh8QT3UR6gqEbLpmtQICUmERPsX44hh9hWzURXzz/nl3JfZfny7tUEN/DXYo8zHX70JXvnCEzB79mwSEhJCS7du3awOqX2orBHSNLO2N/W6m3nk9y/x0NcXcMN3caQfd5FW6iSpwoUvGMVbndxc1bMbL154qfnDBPAFzea105vGVD0INkmEIp0kQiIsZHTOYEJfsxYmaASZ9vk0a2+pj06Cfreaj/0lZjIkIt60adMoLi4OLYcOWdynrb2oHPsnWFkjBBB3QTq//Mu/mD1rLfOmb+CNaRv4v6nr+WDyl/z1kr/QoyCW13a9zoajGwDwBcxE6PSmMVULgF2axiKdJEIibNzT7x7SO6YD5i31z+U8Z21Amb859XjjfJl2Q+ByuYiPj6+2iAaoTIQMXWtAUYUfZd7A09c+S6LHwSMrp3HIcwhfUEMBbCp4Kk6SGTBQgl6pERKSCInw4VAdzL5iNlGVTVKLdi9i9ferrQuo80XQ80rzceFe2G9hLEK0Y5Wt3o26EeL8QUMZ7k/naKCAWV/OwhvQAAWbopDw/UZe/f4QBL0Q27llghbthiRCIqz0SOjBHwb9IfR8+hfTOVFxwrqABo479XjT69bFIVpEaWkpubm55ObmArBv3z5yc3M5eLD+ebBE4yiq+VVV1UeoocYOn8SgXR3Iyd9EecAcd0hVFbTyys+E32027/IUEU0SIRF2fn7hz7mq61UAFHoLeXTto9bNUn/RjyGmk/n466VQWmBNHKJFbNq0if79+9O/vzmjeXZ2Nv3792fGjBkWRxZeqhIh3WhcItSjX396lCfh0/149L0YGNgUBZ+/1CyQ2DPU7CYilyRCIuwoisKjP3qUJHcSYM5S/96e96wJxu6EjNvMx3pQOk2HmeHDh2MYRo1l4cKFVocWVlTVBoDWyDHCbHYHAy68HAzwkl/5WgpBfxmaopiTJYuIJ38FIiwlRyXzpx/9KfT86Y1Pc9BjUXPFwLGnHm9+QzpNC9FIqr2yaawJg6X2TO+P26+i68cwDPP2+UCgDE2xNXeYop2SREiEreHdhvPzC38OQEWwgke+eAStAXedNLuk8+C8q83HJ/fLrPRCNJJqswM06f3bPb0fUT4bDv0oBmBTFLRAOXrlawohiZAIa38Y9Idqo06/ucuipqlBp3WazlloTQxCtFN2uzkoYiAYOEPJmuKTOxGnRaEqhRiGYTaNBSvQVUdzhynaKUmERFiLdkTz2GWPoVQOTfvC5hfYW2zB3F+9b4CYytt0v/4QSvJaPwYh2imb3ay98QX8Tdq/o7sjir0UwwAFDSPow5A5xkQlSYRE2BuUOojbLjY7LPt1P4+seaT1J2a1OWDA7eZjQ4Ov/tG6xxeiHXM4q6bJaHyNEEDn2C4EnV50XSdIOQ5DR7FJjZAwSSIkIsJ9A+6jR3wPALYd38bCHQtbP4gBYwlNmpTzd7Civ5IQ7ZDTYY7+3JSmMYCUDudSHhUk5sIZHKjIxWEAdnczRijaM0mERESIskfx2GWPhSZm/WvuX9lzck/rBpF4Lpx/rfm4+CB899/WPb4Q7ZTLZTZjBYJN+/FwVY/RDNuWBGqAY759OAwDVWadF5UkERIRI6NzBmMvMW9lD+gBHl7zMAG9ab8wm2zQ+FOPZaRpIRrE7TSnzWlqk3ZMh26c930iimanQvPgNAzUyql4hJBESESUiRkT6ZXQC4Bdhbt4ddurrRvABVkQl2Y+/mYZeI607vGFaIeioyoTIa1pNUIeX5BCRyJ2zYZXK8VhGNgdkggJkyRCIqK4bC4ev/xxbJWDqb2y5RV2ndjVegHY7NU7TW+WTtNCnElUlNmfJ9jEfnWrdh+jyNEBR1BBV8pxKyqq9BESlSQREhHnkuRLuLPvnQAEjSAPf/EwAa0Vm8gG3HFqOu3N0mlaiDOJi4oBQG/iqOwlviDFjnhidBWb3Ue0Yge5fV5UkkRIRKTfXPobeif2BmDPyT28vOXl1jt4QleziQzA8705GasQok6x0VEohorWxETIG9Aotsdj9+mU+UuJQjXnARQCSYREhHLYHDx++ePYVXOgtte2v8bWY1tbL4AhE049XjMHDKP1ji1EOxPtdqEYCnoT3yfegI7HHo89qOD1luNWbFIjJEIkERIRq3dSb35z6W8A0A2dh9c8jDfobZ2D97oGUvuaj49shv1rWue4QrRDcVFuVENtctOYN6BR7IjHGVTxB3y4UcAmt88LkyRCIqLd2fdO0jumA7Dfs58Xv3qxdQ6sKHDZA6eer35aaoWEqENCTDQKatNrhIIa5fYYnIadoBbAiWKO9i4EkgiJCGdX7Tx++eM4VbOa/B87/8GmvE2tc/A+YyCxh/l43yr4dkXrHFeIdibO7UbVbXzeYTt3/W1Yo/f3BjRUVSXWGYdmaLgMQAZUFJUkERIR77wO53HfgPsAMDB45ItHKA+Ut/yBbXa4Zvqp58sfhqCv5Y8rRDvjcNi5ds/t9CyPJ08tbfT+voCOqkB8dAIaOg4M6SMkQiQREgL41cW/YkDnAQAcLj3Ms5uebZ0Dp98M5ww0Hx/7GlY+3jrHFaKdSS05j0RfMprS+OYxX1DHpiokxCQRtOnYdV0SIREiiZAQgE21MeuyWURVDrv/zjfvsPbw2pY/sKLA6BdOfSh/8TxsfafljytEOxNUgyjYaMqoW35Nx6YoJMQloqswIjmKDYGTzR6jaJ8kERKiUrf4bmQPzA49n7F2Bh6/p+UPnJoO18449Xzxb+CLF0Br2rxKQoSjoBpA0W1NqhHyB3XsNoUByQMYuj0JrwJ7tcY3sYnwJImQEKf5Re9fMLTLUADyy/N5csOTrXPgYZNOTchqaPDJdJg7BFY/A8d2yx1lIuJpqoZiOJpUIxTQdOyqijMhjosOxhGlQ4XS7CGKdkoSISFOoyoqf/7Rn4l1xALwwXcfsOJAK9zNpShwwzNwxR9OrSv8Dv77mJkQzbkUlmbD7v+Av6zl4xGijdHUIOg2gk1IYAKagd2mEIgxv/KcOlQYTRuTSIQfSYSE+IEusV344+A/hp7PWDuDvLK8lj+waoNrp8P4j6HHFdW3FR+ETa/BP2+FJ3vA38fAurlQuK/l4xKiDdBsGophb1KNUFDTcdhU/P4CUDUcGniRWlZhkkRIiFqMOX8M1517HQAev4cHVz+I1lqTo3YfCr9eCvdvhZGzoOdVoJ42+Jvmh70r4eOH4IUMeGW42cm66GDrxCeEBTRVR9UdBJXGVwkFdQOnTSXm4DqS7D7shoPyqIQWiFK0R3arAxCiLVIUhZnDZrLt+DbyyvLYXLCZV7a+wr0Z97ZeEInnwo9+Zy6+Uti3GvYsh28/heJDp8od+cpcPpkBSb2g62Do1BsSukFcKrhiwVm1RJtTC9icoMrvINF+6KqBYjia1DSm6QZOu4rPW0Ssw4fN3oEKV0zzBynaJUmEhKhDgiuBJ694knEfj0M3dOZtncfg1MEMSh3U+sG4YuGiG8zFMMwxh3b/B3YshrzTJost/M5cGqJq4kmb0xzc0eY0a54UBRS1jkWpfTvKqe1UflM53HD74ua+EiJCGTYdRbcTVBR0TUO12Rq8b1Ui5Pd5iHX4Uf12KoIVLRitaE8kERKiHgNSBnBvv3uZmzsX3dCZsnoKi368iM7Rna0LSlGg88XmckU2HP8Wdi6Gbz6Go1vMprOGMDQIVphLS3DGtszriohk2EDVzSZib8BLtK1hNTr+oI4BuOwqAX8pcU4/itfZehMsizZPEiEhzmBC3wlsytvE+rz1HK84TvZn2SzIWoCzrYxMm3w+XDnFXII+yN9h9hcq/h7KCsy7zHyl4C81H2sB0ANmwqRV/XvaY8MAQwcq/616Hlp+8Fw6nYrWYAdVMxMhn6+caHfDEqFyvzkel9tuI+gvJdqtoXiDlAfk7kthkkRIiDOwqTaeuuopbll6C3lleWw5toXZG2Yzc9hMq0Orye6CcwaYS2sxjMpxjqoSKCFagF1BDZg/Pir85SQ2cLcSr5kIRTltaKVlxLgN7JpKmbekhQIV7Y30lhSiAZLcScy5eg4umzlj9XvfvMc7u2UqDMBsqlNV8/Z/m6P6IkQzUe0qNt1MhHz+hjfnerwBAKIcNvRABdFRYNcUyv2tMLGyaBckERKigS7peEm1WqAn1j/BqkOrLIxIiMhhcyjYdPOHiL8RidCpGiEFI+glJtpmJkIBSYSESRIhIRphdK/R3NHnDgA0Q+MPq/7A1mNbz7CXEOJs2Rz2UzVCgcYnQnaHF5dh4HBGEeWIwatJZ2lhkkRIiEaaPGgyWT2yAPBqXiaumMi+YhnhWYiW5HDaQjVCjUmEPBVm05jNXobTMFAd0cRGxeMzAi0Sp2h/JBESopFUReWJy59gcOpgAIp8Rdz18V0c8BywODIhwpfD6UA1zK8sX8DX4P1KKvsIGbYyXIaB3RlDXHQCASWILp37BZIICdEkTpuT569+nt6JvQEoqChg/MfjOeiRaS6EaAkulwPVMAdRDDShacxvlOA0DBzOWBJizXvOxi0bx84TO5s/WNGuSCIkRBPFOeOYP3I+FyReAEBBuSRDQrSUKLcrlAj5g42oEfJVJUIe3AbYnbH0T8rgou/j2XpsKzn5OS0Sr2g/JBES4iwkuhN5deSroWQovzyfccvGsbd4r8WRCRFeYmPcpxKhQMM7OnsqzJHWfbqHKFQUu5vunc9j6NZE4hyxMtWGkERIiLOV5E7i1ZGvcn6H8wGzmWzcsnF8c/IbiyMTrWHu3Ln06NEDt9tNZmYmGzZssDqksJQUH4uqm4lQsKHTyADFFWaNkFf3EK2oYHcTl9wJAJfqktvohSRCQjSHJHcSC7IWcHHSxQAUegsZ//F46X8Q5hYtWkR2djYzZ85k8+bN9OvXj6ysLAoKCqwOLewkJcSHaoQadddYZR+hCr0YtwHYXcRXJkJOwyY1QkISISGaS6I7kfkj53Np8qUAFPuKuevju2ScoTD23HPPMWHCBMaNG0efPn2YN28e0dHRLFiwwOrQwk5qYkLorrHG1AgVlZn9iSq0YlwAdjdR8QnYHA4cmo3yoNQIRTpJhIRoRgmuBP523d8Y0Nmc66skUMKE5ROkQ2YY8vv95OTkMGLEiNA6VVUZMWIE69atq3Ufn8+Hx+OptoiGSUnscOqusUYkQoXlZtnS4EmcugF2N4qiEJ/cCVsQqRESkZEIPfPMM1xyySWkp6fz5ptvWh2OCHOxzlheHvEymamZAJQHy7n303v58uiXFkcmmtPx48fRNI2UlJRq61NSUsjLy6t1n9mzZ5OQkBBaunXr1hqhhgW304GuaEDjEqGicrNprNh/HIehmRMTA3EdO2HzG9JHSIR/IrRt2zbeeustcnJy2LhxIy+99BJFRUVWhyXCXLQjmpeufYnLzrkMMH91Tvx0Iqu/X21xZMJK06ZNo7i4OLQcOnTI6pDaFU0xkxqtgYmQL6hREdBA8VGhlWHXNLC7AYhL7oTiDUqNkAj/RGjXrl0MGzYMt9tNVFQU/fr1Y9myZVaHJSKA2+7mhatf4OpuVwPg1/3cv/J+VhxcYXFkojkkJydjs9nIz8+vtj4/P5/U1NRa93G5XMTHx1dbRMNpijkSdEP7CBWVm6NKK/YSEjUNmx4I1QjFJ3eCioD0ERLWJ0KrV69m9OjRpKWloSgKS5YsqVHmbG5PTU9P57PPPqOoqIiTJ0/y2Wefcfjw4WY8AyHq5rQ5eXb4s4w8dyQAQT3I5M8ms2y/JOPtndPpZODAgaxYcSqx1XWdFStWMGzYMAsjC1+aaiZCAb1h84QVlpkJU5b9S1YfrPzcd5vJZ1zHTlDup0KaxiKe3eoAysrK6NevH+PHj+enP/1pje1Vt6fOmzePzMxM5syZQ1ZWFrt376Zz584AZGRkEAwGa+y7fPly+vTpw3333cc111xDQkICQ4cOxWaztfh5CVHFoTp48soncX3h4t97/41maEz7fBpJriSGdBlidXjiLGRnZzN27FgGDRrEkCFDmDNnDmVlZYwbN87q0MKSZjP7CGkNTIROViZCPWx5VGgKyq3/h7vXdYDZNOYIqhz3l7VMsKLdsDwRGjVqFKNGjapz++m3pwLMmzePDz/8kAULFjB16lQAcnNz6z3GPffcwz333APAXXfdxQUXXFBnWZ/Ph893avh2uatDNAe7amfW5bOwq3YWf7uYoB7kgc8e4M1Rb3Jeh/OsDk800S233MKxY8eYMWMGeXl5ZGRksGzZshodqEXz0OwGNl1tcCJUdcdYot2DBxspvW8MbYtP7oRdU6SztLC+aaw+Tbk9tTZVg5vt3r2bDRs2kJWVVWdZuatDtBRVUZkxbAZXnHMFACX+En674recqDhhcWTibEyaNIkDBw7g8/lYv349mZmZVocUtgy7jmqoBPWaLQC1KSzzoyoQr5bgq+wbVCWuYzJ2TaVCa/h0HSI8telEqCm3p9bmJz/5CX369OFXv/oVr7/+OnZ73RVhcleHaEl21c7TVz3NRUkXAXC49DAPrn4QTdcsjkyIts9wgGrY0IyG1QjlFXtxO2zEUUrQGV1tm8PlJsYVi4ZGQGvY64nw1KYToeaybt06du7cycaNGxk4cGC9ZeWuDtHSYhwxvHTNS3SKMof5X5+3nrm5cy2OSoi2T3WrGMB7xnYOF+w/Y/k8jxenXSWGcnRXzc/yxPhkAP6w6g8yN2AEa9OJUFNuTxWiPUiJSeHpq57Gppgd9+dvm8+qQ6ssjkqIts0Z4+DigqEAbPv2izOW33nEQ1G5nxjdi+ruUGN7emIfLihOZs3hNfL+i2BtOhGS21NFOBuYMpAHBjwQej5tzTSOlh61LiAh2riYuCj65Jt97IpKzzyxbb7Hi2IrJVYP4ozuWGN7zy4XcdWGRM6JPYeTvpPNHq9oHyxPhEpLS8nNzQ3d+bVv3z5yc3M5ePAgYN6eOn/+fN544w127drFvffeK7enirAx9pKxXNv9WsDsPP3Qmoekv5AQdUjsEIczGAWAp6Kw3rKGYVDiDZKcWEScbhATd06NMknndCUY8BNri6bYV9wiMYu2z/Lb5zdt2sTVV18dep6dnQ3A2LFjWbhwodyeKsKaoij8+bI/s+PEDvLK8tiUv4k3dr7B+PTxVocmRJuTkpxIhWYAUOqtvwbH4w0S1A2iYguJK9eJi+9ao0xSmpkcRWlOTp7h9UT4srxGaPjw4RiGUWNZuHBhqIzcnirCWbwznicufwIFBYAXv3qRnSd2WhyVEG3PuanJ2Aw7Th3K/fWP8XbghDlQost9jDhdxxaVWKNMXHIn7A4nbr8iNUIRzPJESAgBg1MHMy7dbO4N6kGmfj5VJoMU4gd6pZktAVGanYpgSb1lvztWCoDbfgQbgDuhRhlVtZHYJQ1bmUaRr6iZoxXthSRCQrQRkzImcXHSxQDsK97Hc5ueszgiIdqWWHcUXls5Lt1BhVb/iNDfFZQCBrHePeaK+Jp9hAAS07qiFPuks3QEk0RIiDbCYXPwlyv+gstmjoD79u635ZZeIX6g1FWCQ3Pj1euvMf06rwTFcZI0f2WTV6fetZbr3OM8tIJiSvwlDR6xWoQXSYSEaEPO63AekwdNDj1/5ItHyCtr+CjqQoS7iigv9mAMXnz1lttx2IPNfYjz/AH06I4QnVRruZTzzsdWaiZA0jwWmSQREqKNubX3rQzvNhwwP5infj5VfqkKUSUO7ME4vPVMs3Gi1MdRj5ce0Vu5t6gYNbn22iCAlF4XEFth3kB9qESmVIpEkggJ0cYoisKsy2aRGmOOnp6Tn8Pftv7N4qiEaBtiO0bjCCRQodQ93lbOgZOAwf8zNplfcn1vrrNsVGwcPeJ7oBoq3xTKNBuRSBIhIdqgBFcCT135VGgKjr9t+RsrDqw4w15ChL9zu6cSHYjnmM3AF/DXWuaTnXnYog8y2FvM8fOvhsF31fuaPftkkOh1yXxjEUoSISHaqP6d+zOp/yQADAymfj6Vbce2WRyVENYaffkgUj09KLYbfLBmUY3t3oDGv7ccpXP8Svr4/SRdPOaMr9m9bz8SChV2FMj7KxJJIiREG3Zn+p38+LwfA+DVvNzz6T1sObbF4qiEsE6HmBhU1Y1Ds7P2m3drbJ+/+juiHVt52rcaw+ZAvWj0GV+zR78BpJbE8nXRbsoD9d+WL8KPJEJCtGGKovCnH/2JwamDAXM+sgnLJ7Bs/zKLIxPCOh0vSeb840NYbz/Ix2vfIhj0802eh5lL1/KvDS/yd8ezXF7hRR1yD8TUnGz1h5zuKDK7ZKKh89SGpzAMoxXOQrQViiH/4/XyeDwkJCRQXFxMfHy81eGICFUeKOe+lfex/uj60LqR547k/gH30z2+u4WRNZ28t+QaNJWmaUz90/Os6bqEUtdJHJoTp+ZEQUE1zEVRnTgUJ4lKMm6ni35JGaSldubHl1xPQi2jTB/atZ3/t+IOiuICvHTNS1zV7SoLzkw0p4a+vyQROgP5oBJthU/zMeOLGXy076Nq64ekDmFY2jD6JvclLTaNlOgUnDanRVE2nLy35BqcDU3TeOX9j9izbzWlylEMBex2Oy5nDLboRHTAp3s5EThOabCEQ+5vMRQdh+4iVo1jzDk/I/PC/gw6Z2BoENP3Zs/g5fiPOefcC3njxr+jKIq1JynOiiRCzUQ+qERbYhgG73/3Pv+b878UegvrLGdX7UTZo4iyRdX7Ya4oCjbFhoKCTa38V7GF1quKWvdCPdsUFbfNzRNXPFHnseW9JdegNfnKA2zZ9Q1Ldn3At0V72BW3EYBOehrnxpzLsC7DuCi+J+8vepblvfeToMZx54VjGdB1EPExSXRwdwAITY5c5Uzvr2rPf7jvGV7rh9sb9dqNOfYPDnM2cbal5FESoWYiH1SiLSr1l/L27rdZ8u0SDngOWB1OraLsUWy4bUOd2+W9JdfAKoZh8O2BQ2zatp33j75Hoa+Qo/HfWR2WaIReCb1YMmZJvWUa+v6yN3NsQohWEOuM5a6+d3Fn+p3s9+wntyCXvcV7OVJ6hGMVx6gIVuANeqkIVmBQx28dw7wtXzd0c0FH1yv/rVynGRqGYaAZdQ9eV5eqMZCEaGsUReGCHt25oEd3fskN+L1BDh09ytd531JUcRJdM/B7vRwq2k1poAivXo6PqpGsDcy3VPX3Vc132dlur74tKS2FmA6xdWz/wWudoX6jWnmjnm0N2L8prxVaX8+hapzTD55fmnzpGeNsKEmEhGjHFEWhZ0JPeib0bPFjVSVEhmGgo6PpGgZGtWQplFQZeovHI0Rzcbrt9OrZjV49u1kdirCAJEJCiAZRFAW7ctpHhlT4CCHCgIwjJIQQQoiIJYmQEEIIISKWJEJCCCGEiFiSCAkhhBAiYkkiJIQQQoiIJYmQEEIIISKWJEJCCCGEiFiSCAkhhBAiYkkiJIQQQoiIJYmQEEIIISKWJEJCCCGEiFiSCAkhhBAiYkkiJIQQQoiIJbPPn4FhGAB4PB6LIxEivFS9p6reY5FIPl+EaDkN/YyRROgMSkpKAOjWrZvFkQgRnkpKSkhISLA6DEvI54sQLe9MnzGKEck/xxpA13WOHDnCNddcw6ZNm+otO3jwYDZu3NiobbWtP9M6j8dDt27dOHToEPHx8Y05nSar79yae/+GlG2ua13bernWDS/T2G2nrzMMg5KSEtLS0lDVyGylr/p8iYuLQ1EUq8OplxXvhbZMrscpbfVaNPQzRmqEzkBVVbp27Yrdbj/jf7DNZquzTF3balvf0HXx8fGt9kdX37k19/4NKdtc17q29XKtG16msdt+uC5Sa4KqVH2+tCet+V5oD+R6nNIWr0VDPmMi82dYE0ycOPGsytS1rbb1DV3Xms72+I3ZvzWvdW3r5Vo3vExjt1l9bYUQ4oekaawd8ng8JCQkUFxc3Oay73Aj11oIk7wXqpPrcUp7vxZSI9QOuVwuZs6cicvlsjqUsCfXWgiTvBeqk+txSnu/FlIjJIQQQoiIJTVCQgghhIhYkggJIYQQImJJIiSEEEKIiCWJkBBCiHrNnTuXHj164Ha7yczMZMOGDVaH1CJWr17N6NGjSUtLQ1EUlixZUm27YRjMmDGDLl26EBUVxYgRI9izZ0+1MoWFhdx2223Ex8fToUMH7rzzTkpLS1vxLJrH7NmzGTx4MHFxcXTu3JkxY8awe/fuamW8Xi8TJ06kY8eOxMbGcvPNN5Ofn1+tzMGDB7nxxhuJjo6mc+fOTJkyhWAw2JqnckaSCIWxQ4cOMXz4cPr06cOll17Ku+++a3VIYe+mm24iMTGRn/3sZ1aHIkSzWLRoEdnZ2cycOZPNmzfTr18/srKyKCgosDq0ZldWVka/fv2YO3durdufeuopXnjhBebNm8f69euJiYkhKysLr9cbKnPbbbexY8cOPvnkE5YuXcrq1au5++67W+sUms2qVauYOHEiX375JZ988gmBQICRI0dSVlYWKvP73/+ef//737z77rusWrWKI0eO8NOf/jS0XdM0brzxRvx+P2vXruWNN95g4cKFzJgxw4pTqpshwtaRI0eMr776yjAMwzh69KiRlpZmlJaWWhtUmFu5cqXxwQcfGDfffLPVoQjRLIYMGWJMnDgx9FzTNCMtLc2YPXu2hVG1PMBYvHhx6Lmu60Zqaqrx9NNPh9YVFRUZLpfL+Oc//2kYhmHs3LnTAIyNGzeGyvznP/8xFEUxDh8+3Gqxt4SCggIDMFatWmUYhnnuDofDePfdd0Nldu3aZQDGunXrDMMwjI8++shQVdXIy8sLlXn55ZeN+Ph4w+fzte4J1ENqhMJYly5dyMjIACA1NZXk5GQKCwutDSrMDR8+nLi4OKvDEKJZ+P1+cnJyGDFiRGidqqqMGDGCdevWWRhZ69u3bx95eXnVrkVCQgKZmZmha7Fu3To6dOjAoEGDQmVGjBiBqqqsX7++1WNuTsXFxQAkJSUBkJOTQyAQqHY9LrroIrp3717tevTt25eUlJRQmaysLDweDzt27GjF6OsniZCFztQeDc3XNp+Tk4OmaRE9y3VrXm8hwsHx48fRNK3aFxlASkoKeXl5FkVljarzre9a5OXl0blz52rb7XY7SUlJ7fp66brOAw88wGWXXUZ6ejpgnqvT6aRDhw7Vyv7wetR2vaq2tRUy6aqFqtqjx48fX61dtUpV2/y8efPIzMxkzpw5ZGVlsXv37tCbLSMjo9aOZ8uXLyctLQ0wO+/dcccdzJ8/v2VPqI1rresthBDhZOLEiWzfvp01a9ZYHUqLkETIQqNGjWLUqFF1bn/uueeYMGEC48aNA2DevHl8+OGHLFiwgKlTpwKQm5tb7zF8Ph9jxoxh6tSp/OhHP2q22Nuj1rjeQoST5ORkbDZbjTuB8vPzSU1NtSgqa1Sdb35+Pl26dAmtz8/Pr9YF4YedyIPBIIWFhe32ek2aNCnU6btr166h9ampqfj9foqKiqrVCp3+t5GamlqjVr3qb6ktXQ9pGmujmqNt3jAMfv3rX3PNNddw++23t1SoYUH6QghRk9PpZODAgaxYsSK0Ttd1VqxYwbBhwyyMrPX17NmT1NTUatfC4/Gwfv360LUYNmwYRUVF5OTkhMr897//Rdd1MjMzWz3ms2EYBpMmTWLx4sX897//pWfPntW2Dxw4EIfDUe167N69m4MHD1a7Htu2bauWHH7yySfEx8fTp0+f1jmRBpAaoTaqvrb5r7/+ukGv8cUXX7Bo0SIuvfTSUH+Yf/zjH/Tt27e5w233muN6g9kxcsuWLZSVldG1a1fefffdiPvCEOElOzubsWPHMmjQIIYMGcKcOXMoKysL1ZyGk9LSUr799tvQ83379pGbm0tSUhLdu3fngQceYNasWVxwwQX07NmT6dOnk5aWxpgxYwC4+OKLuf7665kwYQLz5s0jEAgwadIkbr311nbXdD5x4kTeeust3n//feLi4kJ9ehISEoiKiiIhIYE777yT7OxskpKSiI+P53e/+x3Dhg1j6NChAIwcOZI+ffpw++2389RTT5GXl8cjjzzCxIkT29YErVbftiZM/OBWzcOHDxuAsXbt2mrlpkyZYgwZMqSVows/cr2FaLgXX3zR6N69u+F0Oo0hQ4YYX375pdUhtYiVK1caQI1l7NixhmGYt9BPnz7dSElJMVwul3Httdcau3fvrvYaJ06cMH75y18asbGxRnx8vDFu3DijpKTEgrM5O7VdB8B4/fXXQ2UqKiqM3/72t0ZiYqIRHR1t3HTTTcbRo0ervc7+/fuNUaNGGVFRUUZycrIxefJkIxAItPLZ1E9mn28jFEVh8eLFoV8Wfr+f6Oho3nvvvdA6gLFjx1JUVMT7779vTaBhQq63EEIIkD5CbZa0zbcuud5CCBGZpI+Qhc7UHh1JbfOtQa63EEKIH5KmMQt99tlnXH311TXWjx07loULFwLw0ksv8fTTT5OXl0dGRgYvvPBCu7v7oK2Q6y2EEOKHJBESQgghRMSSPkJCCCGEiFiSCAkhhBAiYkkiJIQQQoiIJYmQEEIIISKWJEJCCCGEiFiSCAkhhBAiYkkiJIQQQjTR0qVL6dmzJ0OGDGHPnj1WhyOaQMYREkIIIZqod+/ezJ07lx07drBu3Trefvttq0MSjSQ1QkIIIUQdTpw4QefOndm/f3+t2zt27Mj5559Pjx49cDqdofW33norzz77bCtFKc6G1AgJIYSIOB999BE33nhjndt/8YtfsGjRIrKzsykpKWH+/Pm1lps/fz6/+c1vSElJYfv27SQlJQGwfft2rrzySvbt20dCQkKLnINoHlIjJMLK2bbX33TTTSQmJvKzn/2sBaITQrQVV199NUePHq22fP/991x33XV07NiRhx56iPLycl577TXuvPPOWl8jGAzy/PPP88c//pHS0lISExND29LT0+nVqxdvvvlma52SaCJJhERYmTx5MvPnz+e2225j+vTpjd7//vvv5+9//3sLRCaEaEuioqJITU0NLZ06dWLy5Mls3ryZFStW0K9fPz766CNcLhdDhw6t9TXmzZvHeeedx8SJEykpKWHv3r3Vto8ePVr6DLUDkgiJdqe+Nvu62usbavjw4cTFxdW6Tdr8hQhPmqbxq1/9ik8//TSUBAF8/vnnDBw4sNZ9CgsLeeyxx3jyySfp2rUrCQkJ5ObmViszZMgQNmzYgM/na+lTEGdBEiFhidzcXG699VZSU1NxOp306tWLP//5zwSDwTPu+/jjj/OTn/yEHj161Ng2btw4evXqxb333sucOXOaNeZHHnmExx9/nOLi4mZ9XSGEdaqSoOXLl/Ppp5+GkiCAAwcOkJaWVut+M2fO5KabbuLiiy8GoE+fPmzZsqVambS0NPx+P3l5eS13AuKsSSIkWt2CBQsYMmQIKSkpLF26lF27djF9+nTmzJlTZ1t8lfra7Otrr6+SkZFBenp6jeXIkSNnjFva/IUIL5qmcfvtt7N8+XJWrFhBRkZGte0VFRW43e4a++3cuZM333yTRx99NLQuPT29Ro1QVFQUYH5uibbLbnUAIrJ89tlnTJgwgddff5077rgjtL5Xr14EAgHuvvtupk+fzvnnn1/r/vW12Z/eXv+Xv/yFvXv30qtXr2plfvhB1VhVbf4TJ048q9cRQlirKgn6+OOP+fTTT2skQQDJycmcPHmyxvrf//73FBUV0bVr19A6Xdfp1q1btXKFhYUAdOrUqXmDF81KaoREq7r//vsZNWpUtSSoylVXXQVQo3r5dHW12Tekvb45SJu/EO2fpmnccccdoSSof//+tZbr378/O3furLZu6dKl5OTk8NVXX5GbmxtaXnvtNQ4ePFgtcdq+fTtdu3YlOTm5Rc9HnB1JhESr+eqrr9i6dWudtSkVFRUA2O11V1TW1WbfkPb6hhgxYgQ///nP+eijj+jatSvr1q2rtl3a/IVo33Rd54477mDJkiW8+eabdOnShby8vGqLpmkAZGVlsWPHjlByEwgEmDx5MlOmTKnRzH7ttdcC1X/Iff7554wcObL1T1I0ijSNiVZTVUNTWxU0wObNmwG49NJL63yN2trsq9rrd+3aFVpXW3t9Q3z66af1bpc2fyHat40bN/LWW28BcMMNN9TYrigKRUVFxMfH07dvXwYMGMA777zDPffcw4svvkhRURGTJk2qsV+3bt2Ijo4mNzeX4cOH4/V6WbJkCcuWLWvxcxJnRxIh0Wr8fj9ArZ0PAf76179y5ZVX0rNnzzpfo7Y2+4a21zcHafMXon3LzMykMRMqzJgxgylTpjBhwgSys7PJzs6utZyiKJSVlYWev/766wwZMqTOMYhE2yGJkGg1Vbelrlq1ijFjxlTb9swzz7Br1y7WrFkDmP2Fqm5T37ZtG+vXr2fQoEH079+/2l1bp7fXn96ktnHjRsaPH8/JkydrvXusqaTNX4jIcuONN7Jnzx4OHz7cqB9XDoeDF198sQUjE81F5hoTrer6669n27ZtzJkzh0GDBpGfn8+rr77K22+/zeLFi7nuuuuqlZ85cyZFRUU8//zzgJkUDRgwgIKCAmJjY0lPT2f8+PE8+OCD1fY7ePAg5557LitXrmT48OHNFv+vf/1rbDYbr732WrO9phBCCOtIjZBoVf/617/405/+xJQpU/j+++/RNI3rr7+eb775pkYn6Dlz5rB//34WLlwYWnd6m31ZWVmD2+ubg7T5CyFE+JEaIWGpu+66i5UrV5KTk0OHDh1C6xcuXMgHH3zAu+++i81mq7bPhx9+yJQpU9i+fTuq2no3Pr788sssXryY5cuXt9oxhRBCtCy5fV5Yau7cuYwfP56vvvoqtG7x4sW8/fbb/POf/6yRBIHZZn/33Xdz+PDh1gxV2vyFECIMSY2QaHMSExPp1KkT0dHRAMyaNYsf//jHFkclhBAiHEkiJIQQQoiIJU1jQgghhIhYkggJIYQQImJJIiSEEEKIiCWJkBBCCCEiliRCQgghhIhYkggJIYQQImJJIiSEEEKIiCWJkBBCCCEiliRCQgghhIhYkggJIYQQImJJIiSEEEKIiCWJkBBCCCEi1v8H9qiVNzlmfJwAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "controls = RAT.Controls()\n", "problem, results = RAT.run(problem, controls)\n", "\n", "RAT.plotting.plot_ref_sld(problem, results)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.10" } }, "nbformat": 4, "nbformat_minor": 4 }