.. _customLanguages: ============================== Custom Models in Python or C++ ============================== Custom models are usually written in Matlab, but RAT allows alternative languages to be used. You can write your custom models either in Python or C++. The reason for the Python functionality is mainly since this is the more natural choice when using RAT from Python with pythonRAT, but also because the user might choose to incorporate Python libraries into the custom models that are not available in Matlab. The reason for C++ if for pure speed, where very computationally demanding custom models calculations are required. Both options are easy to use in RAT. .. note:: Examples of using Python and C++ custom models can be found in the /examples/miscellaneous/alternativeLanguages folder ******************** Python Custom Models ******************** .. note:: Before you use Python from your Matlab session, please ensure that Python is `configured correctly on your system. `_ Custom models in Python and Matlab are very similar in structure as shown below: .. tab-set-code:: .. code-block:: MATLAB % customBilayer.m function [output,sub_rough] = customBilayer(params,bulk_in,bulk_out,contrast) sub_rough = params(1); oxide_thick = params(2); oxide_hydration = params(3); lipidAPM = params(4); headHydration = params(5); bilayerHydration = params(6); bilayerRough = params(7); waterThick = params(8); % We have a constant SLD for the oxide.. oxide_SLD = 3.41e-6; % Now make the lipid layers.. % Use known lipid volume and compositions % to make the layers % define all the neutron b's. bc = 0.6646e-4; %Carbon bo = 0.5843e-4; %Oxygen bh = -0.3739e-4; %Hydrogen bp = 0.513e-4; %Phosphorus bn = 0.936e-4; %Nitrogen bd = 0.6671e-4; %Deuterium % Now make the lipid groups.. COO = (4*bo) + (2*bc); GLYC = (3*bc) + (5*bh); CH3 = (2*bc) + (6*bh); PO4 = (1*bp) + (4*bo); CH2 = (1*bc) + (2*bh); CHOL = (5*bc) + (12*bh) + (1*bn); % Group these into heads and tails: Head = CHOL + PO4 + GLYC + COO; Tails = (34*CH2) + (2*CH3); % We need volumes for each. % Use literature values: vHead = 319; vTail = 782; % we use the volumes to calculate the SLD's SLDhead = Head / vHead; SLDtail = Tails / vTail; % We calculate the layer thickness' from % the volumes and the APM... headThick = vHead / lipidAPM; tailThick = vTail / lipidAPM; % Manually deal with hydration for layers in % this example. oxSLD = (oxide_hydration * bulk_out(contrast)) + ((1 - oxide_hydration) * oxide_SLD); headSLD = (headHydration * bulk_out(contrast)) + ((1 - headHydration) * SLDhead); tailSLD = (bilayerHydration * bulk_out(contrast)) + ((1 - bilayerHydration) * SLDtail); % Make the layers oxide = [oxide_thick oxSLD sub_rough]; water = [waterThick bulk_out(contrast) bilayerRough]; head = [headThick headSLD bilayerRough]; tail = [tailThick tailSLD bilayerRough]; output = [oxide ; water ; head ; tail ; tail ; head]; end .. code-block:: Python # customBilayer.py import numpy as np def customBilayer(params, bulk_in, bulk_out, contrast): params = np.array(params) bulk_in = np.array(bulk_in) bulk_out = np.array(bulk_out) sub_rough = params[0] oxide_thick = params[1] oxide_hydration = params[2] lipidAPM = params[3] headHydration = params[4] bilayerHydration = params[5] bilayerRough = params[6] waterThick = params[7] # We have a constant SLD for the oxide.. oxide_SLD = 3.41e-6 # Now make the lipid layers.. # Use known lipid volume and compositions # to make the layers # define all the neutron b's. bc = 0.6646e-4 # Carbon bo = 0.5843e-4 # Oxygen bh = -0.3739e-4 # Hydrogen bp = 0.513e-4 # Phosphorus bn = 0.936e-4 # Nitrogen bd = 0.6671e-4 # Deuterium # Now make the lipid groups.. COO = (4*bo) + (2*bc) GLYC = (3*bc) + (5*bh) CH3 = (2*bc) + (6*bh) PO4 = (1*bp) + (4*bo) CH2 = (1*bc) + (2*bh) CHOL = (5*bc) + (12*bh) + (1*bn) # Group these into heads and tails: Head = CHOL + PO4 + GLYC + COO Tails = (34*CH2) + (2*CH3) # We need volumes for each. # Use literature values: vHead = 319 vTail = 782 # we use the volumes to calculate the SLD's SLDhead = Head / vHead SLDtail = Tails / vTail # We calculate the layer thickness' from # the volumes and the APM... headThick = vHead / lipidAPM tailThick = vTail / lipidAPM # Manually deal with hydration for layers in # this example. oxSLD = (oxide_hydration * bulk_out[contrast]) + ((1 - oxide_hydration) * oxide_SLD) headSLD = (headHydration * bulk_out[contrast]) + ((1 - headHydration) * SLDhead) tailSLD = (bilayerHydration * bulk_out[contrast]) + ((1 - bilayerHydration) * SLDtail) # Make the layers oxide = [oxide_thick, oxSLD, sub_rough] water = [waterThick, bulk_out[contrast], bilayerRough] head = [headThick, headSLD, bilayerRough] tail = [tailThick, tailSLD, bilayerRough] output = np.array([oxide, water, head, tail, tail, head]) return output, sub_rough To use a python custom model from RAT, you need to add it to the current project, taking care to specify the language correctly. .. tab-set-code:: .. code-block:: MATLAB problem.addCustomFile('myModel', 'customBilayer.py', 'python', pwd); .. code-block:: Python problem.custom_files.append(name='myModel', filename='customBilayer.py', language='python') You can then use this in your calculations in the same way as a normal, Matlab custom model. ***************** C++ Custom Models ***************** If Matlab or Python custom models are too slow, you also have the option of providing a C++ custom model. You then have to compile and build this into a shared library in order to use it with RAT. Following on from our custom bilayer examples, the equivalent C++ custom model should follow this format. .. code-block:: C++ //customBilayer.cpp #include #if defined(_WIN32) || defined(_WIN64) #define LIB_EXPORT __declspec(dllexport) #else #define LIB_EXPORT #endif // We user extern "C" decorator to avoid name mangling.... extern "C" { LIB_EXPORT void customBilayer(std::vector& params, std::vector& bulkIn, std::vector& bulkOut, int contrast, std::vector& output, double* outputSize, double* rough) { double subRough = params[0]; double oxideThick = params[1]; double oxideHydration = params[2]; double lipidAPM = params[3]; double headHydration = params[4]; double bilayerHydration = params[5]; double bilayerRough = params[6]; double waterThick = params[7]; // We have a constant SLD for the oxide double oxideSLD = 3.41e-6; // Now make the lipid layers.. // Use known lipid volume and compositions // to make the layers // define all the neutron b's. double bc = 0.6646e-4; //Carbon double bo = 0.5843e-4; //Oxygen double bh = -0.3739e-4; //Hydrogen double bp = 0.513e-4; //Phosphorus double bn = 0.936e-4; //Nitrogen double bd = 0.6671e-4; //Deuterium // Now make the lipid groups.. double COO = (4*bo) + (2*bc); double GLYC = (3*bc) + (5*bh); double CH3 = (2*bc) + (6*bh); double PO4 = (1*bp) + (4*bo); double CH2 = (1*bc) + (2*bh); double CHOL = (5*bc) + (12*bh) + (1*bn); // Group these into heads and tails: double Head = CHOL + PO4 + GLYC + COO; double Tails = (34*CH2) + (2*CH3); // We need volumes for each. // Use literature values: double vHead = 319; double vTail = 782; // we use the volumes to calculate the SLD's double SLDhead = Head / vHead; double SLDtail = Tails / vTail; // We calculate the layer thickness' from // the volumes and the APM... double headThick = vHead / lipidAPM; double tailThick = vTail / lipidAPM; // Manually deal with hydration for layers in // this example. double oxSLD = (oxideHydration * bulkOut[contrast]) + ((1 - oxideHydration) * oxideSLD); double headSLD = (headHydration * bulkOut[contrast]) + ((1 - headHydration) * SLDhead); double tailSLD = (bilayerHydration * bulkOut[contrast]) + ((1 - bilayerHydration) * SLDtail); // Make the layers // oxide... output.push_back(oxideThick); output.push_back(oxSLD); output.push_back(subRough); // Water... output.push_back(waterThick); output.push_back(bulkOut[contrast]); output.push_back(bilayerRough); // Heads... output.push_back(headThick); output.push_back(headSLD); output.push_back(bilayerRough); // Tails... output.push_back(tailThick); output.push_back(tailSLD); output.push_back(bilayerRough); // Tails... output.push_back(tailThick); output.push_back(tailSLD); output.push_back(bilayerRough); // Heads... output.push_back(headThick); output.push_back(headSLD); output.push_back(bilayerRough); *rough = subRough; outputSize[0] = 6; // row - Necessary to output how many layers in stack outputSize[1] = 3; } } // extern "C" Before you can use this file, you need to compile and build it into a shared library. The details will vary according to you system, for example * Clang on Apple (OSX) .. code-block:: Bash clang -c customBilayer.cpp -o customBilayer.o -std=c++11 -arch x86_64 clang -shared customBilayer.o -o customBilayer.dylib -arch x86_64 -lc++ * GCC on Linux: .. code-block:: Bash g++ -fPIC -c customBilayer.cpp -o customBilayer.o -std=c++11 g++ -shared customBilayer.o -o customBilayer.so * Windows (with MSVC): .. code-block:: console cl /EHsc /LD customBilayer.cpp This will create either customBilayer.dylib (OSX), customBilayer.dll (Windows) or customBilayer.so (Linux). To use this, we just add the relevant model to out project, in the same way as for Matlab and Python models: .. tab-set-code:: .. code-block:: MATLAB problem.addCustomFile('DSPC Model', 'customBilayer.dylib', 'cpp', pwd); .. code-block:: Python problem.custom_files.append(name='DSPC Model', filename='customBilayer.dylib', language='cpp') You can then use your C++ custom model in your project as normal. *********************** Performance Comparisons ***********************