General Minimiser Utilities#
General utilities used by the minimisers.
- minimisers.generalUtils.getFittedPriors(paramNames, priorNames, priorValues, fitLimits)#
Convert RAT prior information into an array.
- Parameters:
paramNames (
array
) – The name of each parameter in the list.priorNames (
array
) – The name of the prior for each parameter (‘uniform’, ‘gaussian’, or ‘jeffreys’)priorValues (
array
) – The values for the prior (mu/sigma for Gaussian, unused otherwise)fitLimits (
array
) – The lower and upper limits for each parameter.
- Returns:
priorFitList – a
length(paramNames)x5
array, where each row is the index of the parameter, a numeric flag for the prior, the prior values, and the limits for each parameter.- Return type:
array
- minimisers.generalUtils.makeCell(m, n, vals)#
Creates a m by n cell array and initialise each cell with the given value.
- Parameters:
m (
int
) – The dimension of the array.n (
int
) – The dimension of the array.vals (
array
) – The values to fill the cell array with.
- Returns:
x – The required cell array.
- Return type:
array
Examples
>>> array = makeCell(5, 2, [1, 1])
- minimisers.generalUtils.makeEmptyBayesResultsStruct(nContrasts, isDomains, nChains)#
A function to make an empty container to hold the results of a Bayesian calculation.
- Parameters:
nContrasts (
int
) – The number of contrasts.isDomains (
bool
) – Whether the calculation is a domains calculation.nChains (
int
) – The number of chains in the calculation.
- Returns:
bayesResults – A struct with the following fields:
predictionIntervals: [1×1 struct]
confidenceIntervals: [1×1 struct]
dreamParams: [1×1 struct]
dreamOutput: [1×1 struct]
nestedSamplerOutput: [1×1 struct]
chain: [array of double]
- Return type:
struct
- minimisers.generalUtils.packParams(problemStruct, limits)#
Pack the parameters into an array of those being fitted.
- Parameters:
problemStruct (
struct
) – The project struct.limits (
struct
) – The limits for each parameter.
- Returns:
problemStruct (struct) – The project struct with fit information.
fitNames (array) – The names of the parameters being fit.
- minimisers.generalUtils.packParamsPriors(problemStruct, limits, priors)#
Pack the parameters into an array of those being fitted.
- Parameters:
problemStruct (
struct
) – The project struct.problemLimits (
struct
) – The limits for each parameter.priors (
array
) – The priors of each parameter.
- Returns:
problemStruct (struct) – The project struct with fit information.
fitNames (array) – The names of the parameters being fit.
fitPriors (array) – The priors of each fit parameter.
- minimisers.generalUtils.unpackParams(problemStruct)#
Unpack params out of fitParams and back into problem.params.
- Parameters:
problemStruct (
struct
) – The project struct.- Returns:
problemStruct – The project struct with unpacked fit information.
- Return type:
struct
- minimisers.generalUtils.bayesStats.percentileConfidenceIntervals(chain)#
Calculate percentile confidence intervals for a chain.
- Parameters:
chain (
array
) – The chain from an MCMC calculation.- Returns:
confidenceIntervals – The mean and the 65% and 95% confidence intervals for the chain.
- Return type:
array
- minimisers.generalUtils.bayesStats.processBayes(bayesOutputs, problemStruct, controls)#
Process the output of a Bayesian optimisation.
- Parameters:
bayesOutputs (
struct
) – The outputs of the Bayesian optimisation.problemStruct (
struct
) – The struct for the project.controls (
struct
) – The struct for the controls.
- Returns:
problemStruct (struct) – The struct for the output project.
result (struct) – The results object from the optimisation.
bayesResults (struct) – The Bayesian-specific results from the optimisation.
- minimisers.generalUtils.bayesStats.refPercentileConfidenceIntervals(bayesOutputs, problemStruct, controls, results)#
Calculate the percentile confidence intervals for the reflectivity.
- Parameters:
bayesOutputs (
struct
) – The outputs of the Bayesian optimisation.problemStruct (
struct
) – The struct for the project.controls (
struct
) – The struct for the controls.results (
struct
) – The results object from the optimisation.
- Returns:
allPredInts – The prediction intervals from the optimisation.
- Return type:
array