Outputs#

This module contains the Results objects and the relevant objects to retrieve results data from the C++ module.

Converts outputs from the compiled RAT code to python dataclasses

class RATapi.outputs.BayesResults(reflectivity: list, simulation: list, shiftedData: list, backgrounds: list, resolutions: list, layerSlds: list, sldProfiles: list, resampledLayers: list, calculationResults: RATapi.outputs.CalculationResults, contrastParams: RATapi.outputs.ContrastParams, fitParams: numpy.ndarray, fitNames: list[str], predictionIntervals: RATapi.outputs.PredictionIntervals, confidenceIntervals: RATapi.outputs.ConfidenceIntervals, dreamParams: RATapi.outputs.DreamParams, dreamOutput: RATapi.outputs.DreamOutput, nestedSamplerOutput: RATapi.outputs.NestedSamplerOutput, chain: numpy.ndarray)#
Parameters:
class RATapi.outputs.CalculationResults(chiValues: numpy.ndarray, sumChi: float)#
Parameters:
  • chiValues (ndarray)

  • sumChi (float)

class RATapi.outputs.ConfidenceIntervals(percentile95: numpy.ndarray, percentile65: numpy.ndarray, mean: numpy.ndarray)#
Parameters:
  • percentile95 (ndarray)

  • percentile65 (ndarray)

  • mean (ndarray)

class RATapi.outputs.ContrastParams(scalefactors: numpy.ndarray, bulkIn: numpy.ndarray, bulkOut: numpy.ndarray, subRoughs: numpy.ndarray, resample: numpy.ndarray)#
Parameters:
  • scalefactors (ndarray)

  • bulkIn (ndarray)

  • bulkOut (ndarray)

  • subRoughs (ndarray)

  • resample (ndarray)

class RATapi.outputs.DreamOutput(allChains: numpy.ndarray, outlierChains: numpy.ndarray, runtime: float, iteration: float, modelOutput: float, AR: numpy.ndarray, R_stat: numpy.ndarray, CR: numpy.ndarray)#
Parameters:
  • allChains (ndarray)

  • outlierChains (ndarray)

  • runtime (float)

  • iteration (float)

  • modelOutput (float)

  • AR (ndarray)

  • R_stat (ndarray)

  • CR (ndarray)

class RATapi.outputs.DreamParams(nParams: float, nChains: float, nGenerations: float, parallel: bool, CPU: float, jumpProbability: float, pUnitGamma: float, nCR: float, delta: float, steps: float, zeta: float, outlier: str, adaptPCR: bool, thinning: float, epsilon: float, ABC: bool, IO: bool, storeOutput: bool, R: numpy.ndarray)#
Parameters:
  • nParams (float)

  • nChains (float)

  • nGenerations (float)

  • parallel (bool)

  • CPU (float)

  • jumpProbability (float)

  • pUnitGamma (float)

  • nCR (float)

  • delta (float)

  • steps (float)

  • zeta (float)

  • outlier (str)

  • adaptPCR (bool)

  • thinning (float)

  • epsilon (float)

  • ABC (bool)

  • IO (bool)

  • storeOutput (bool)

  • R (ndarray)

class RATapi.outputs.NestedSamplerOutput(logZ: float, logZErr: float, nestSamples: numpy.ndarray, postSamples: numpy.ndarray)#
Parameters:
  • logZ (float)

  • logZErr (float)

  • nestSamples (ndarray)

  • postSamples (ndarray)

class RATapi.outputs.PredictionIntervals(reflectivity: list, sld: list, sampleChi: numpy.ndarray)#
Parameters:
  • reflectivity (list)

  • sld (list)

  • sampleChi (ndarray)

class RATapi.outputs.Results(reflectivity: list, simulation: list, shiftedData: list, backgrounds: list, resolutions: list, layerSlds: list, sldProfiles: list, resampledLayers: list, calculationResults: RATapi.outputs.CalculationResults, contrastParams: RATapi.outputs.ContrastParams, fitParams: numpy.ndarray, fitNames: list[str])#
Parameters:
  • reflectivity (list)

  • simulation (list)

  • shiftedData (list)

  • backgrounds (list)

  • resolutions (list)

  • layerSlds (list)

  • sldProfiles (list)

  • resampledLayers (list)

  • calculationResults (CalculationResults)

  • contrastParams (ContrastParams)

  • fitParams (ndarray)

  • fitNames (list[str])

RATapi.outputs.get_field_string(field, value, array_limit)#

Returns a string representation of class fields where large and multidimensional arrays are represented by their shape.

Parameters:
  • field (str) – The name of the field in the RAT output class.

  • value (Any) – The value of the given field in the RAT output class.

  • array_limit (int) – The maximum length of 1D arrays which will be fully displayed.

Returns:

field_string – The string representation of the field in the RAT output class.

Return type:

str

RATapi.outputs.make_results(procedure, output_results, bayes_results=None)#

Initialise a python Results or BayesResults object using the outputs from a RAT calculation.

Parameters:
  • procedure (Procedures)

  • output_results (OutputResult)

  • bayes_results (BayesResults | None)

Return type:

Results | BayesResults